結果

問題 No.1816 MUL-DIV Game
ユーザー 👑 terry_u16terry_u16
提出日時 2022-01-21 21:45:37
言語 C#
(.NET 7.0.402)
結果
AC  
実行時間 277 ms / 2,000 ms
コード長 45,424 bytes
コンパイル時間 10,891 ms
コンパイル使用メモリ 145,332 KB
実行使用メモリ 191,448 KB
最終ジャッジ日時 2023-08-17 05:30:30
合計ジャッジ時間 16,345 ms
ジャッジサーバーID
(参考情報)
judge13 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 55 ms
26,628 KB
testcase_01 AC 56 ms
26,624 KB
testcase_02 AC 51 ms
26,552 KB
testcase_03 AC 51 ms
28,292 KB
testcase_04 AC 51 ms
26,480 KB
testcase_05 AC 52 ms
26,132 KB
testcase_06 AC 54 ms
26,628 KB
testcase_07 AC 55 ms
26,604 KB
testcase_08 AC 54 ms
28,652 KB
testcase_09 AC 73 ms
32,280 KB
testcase_10 AC 140 ms
54,712 KB
testcase_11 AC 133 ms
50,428 KB
testcase_12 AC 112 ms
46,176 KB
testcase_13 AC 177 ms
54,696 KB
testcase_14 AC 119 ms
48,680 KB
testcase_15 AC 139 ms
52,484 KB
testcase_16 AC 75 ms
35,272 KB
testcase_17 AC 227 ms
55,880 KB
testcase_18 AC 216 ms
55,372 KB
testcase_19 AC 134 ms
52,520 KB
testcase_20 AC 233 ms
57,592 KB
testcase_21 AC 112 ms
45,660 KB
testcase_22 AC 99 ms
41,352 KB
testcase_23 AC 56 ms
26,784 KB
testcase_24 AC 57 ms
26,708 KB
testcase_25 AC 276 ms
56,944 KB
testcase_26 AC 276 ms
57,228 KB
testcase_27 AC 266 ms
57,124 KB
testcase_28 AC 270 ms
59,256 KB
testcase_29 AC 277 ms
191,448 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
  Determining projects to restore...
  Restored /home/judge/data/code/main.csproj (in 171 ms).
.NET 向け Microsoft (R) Build Engine バージョン 17.0.0-preview-21470-01+cb055d28f
Copyright (C) Microsoft Corporation.All rights reserved.

  プレビュー版の .NET を使用しています。https://aka.ms/dotnet-core-preview をご覧ください
  main -> /home/judge/data/code/bin/Release/net6.0/main.dll
  main -> /home/judge/data/code/bin/Release/net6.0/publish/

ソースコード

diff #

using System;
using System.Buffers;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics.X86;
using System.Text;
using YukicoderContest328.Problems;

namespace YukicoderContest328.Problems
{
    public class ProblemA : ProblemBase
    {
        public ProblemA() : base(false) { }

        [MethodImpl(MethodImplOptions.AggressiveOptimization)]
        protected override void SolveEach(IOManager io)
        {
            var n = io.ReadInt();
            var a = io.ReadLongArray(n);

            var set = new RedBlackTree<long>();

            foreach (var ai in a)
            {
                set.Add(ai);
            }

            var i = 0;

            while (set.Count > 1)
            {
                if (i % 2 == 0)
                {
                    var x = set.Min;
                    set.Remove(x);
                    var y = set.Min;
                    set.Remove(y);
                    set.Add(x * y);
                }
                else
                {
                    var y = set.Max;
                    set.Remove(y);
                    var x = set.Max;
                    set.Remove(x);
                    set.Add((x + y - 1) / y);
                }

                i++;
            }

            io.WriteLine(set.Min);
        }

        /// <summary>
        /// <para>Red-Black tree which allows duplicated values (like multiset).</para>
        /// <para>Based on .NET Runtime https://github.com/dotnet/runtime/blob/master/src/libraries/System.Collections/src/System/Collections/Generic/SortedSet.cs </para>
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// 
        /// .NET Runtime
        ///   Copyright (c) .NET Foundation and Contributors
        ///   Released under the MIT license
        ///   https://github.com/dotnet/runtime/blob/master/LICENSE.TXT
        public class RedBlackTree<T> : ICollection<T>, IReadOnlyCollection<T> where T : IComparable<T>
        {
            public int Count { get; private set; }

            public bool IsReadOnly => false;

            protected Node _root;

            public T this[Index index]
            {
                get
                {
                    var i = index.GetOffset(Count);
                    if (unchecked((uint)i) >= Count)
                    {
                        throw new ArgumentOutOfRangeException(nameof(index));
                    }

                    var current = _root;
                    while (true)
                    {
                        var leftCount = current.Left?.Count ?? 0;
                        if (leftCount == i)
                        {
                            return current.Item;
                        }
                        else if (leftCount > i)
                        {
                            current = current.Left;
                        }
                        else
                        {
                            i -= leftCount + 1;
                            current = current.Right;
                        }
                    }
                }
            }

            /// <summary>
            /// 最小の要素を返します。要素が空の場合、default値を返します。
            /// </summary>
            public T Min
            {
                get
                {
                    if (_root == null)
                    {
                        return default;
                    }
                    else
                    {
                        var current = _root;
                        while (current.Left != null)
                        {
                            current = current.Left;
                        }
                        return current.Item;
                    }
                }
            }

            /// <summary>
            /// 最大の要素を返します。要素が空の場合、default値を返します。
            /// </summary>
            public T Max
            {
                get
                {
                    if (_root == null)
                    {
                        return default;
                    }
                    else
                    {
                        var current = _root;
                        while (current.Right != null)
                        {
                            current = current.Right;
                        }
                        return current.Item;
                    }
                }
            }

            #region ICollection<T> members

            public void Add(T item)
            {
                if (_root == null)
                {
                    _root = new Node(item, NodeColor.Black);
                    Count = 1;
                    return;
                }

                Node current = _root;
                Node parent = null;
                Node grandParent = null;        // 親、祖父はRotateで直接いじる
                Node greatGrandParent = null;   // 曾祖父はRotate後のつなぎ替えで使う(2回Rotateすると曾祖父がcurrentの親になる)

                var order = 0;
                while (current != null)
                {
                    current.Count++;    // 部分木サイズ++
                    order = item.CompareTo(current.Item);

                    if (current.Is4Node)
                    {
                        // 4-node (RBR) の場合は2-node x 2 (BRB) に変更
                        current.Split4Node();
                        if (Node.IsNonNullRed(parent))
                        {
                            // Splitの結果親と2連続でRRになったら修正
                            InsertionBalance(current, ref parent, grandParent, greatGrandParent);
                        }
                    }

                    greatGrandParent = grandParent;
                    grandParent = parent;
                    parent = current;
                    current = order <= 0 ? current.Left : current.Right;
                }

                var newNode = new Node(item, NodeColor.Red);
                if (order <= 0)
                {
                    parent.Left = newNode;
                }
                else
                {
                    parent.Right = newNode;
                }

                if (parent.IsRed)
                {
                    // Redの親がRedのときは修正
                    InsertionBalance(newNode, ref parent, grandParent, greatGrandParent);
                }

                _root.Color = NodeColor.Black;  // rootは常にBlack(Red->Blackとなったとき木全体の黒高さが1増える)
                Count++;
            }

            public void Clear()
            {
                _root = null;
                Count = 0;
            }

            public bool Contains(T item)
            {
                var current = _root;
                while (current != null)
                {
                    var order = item.CompareTo(current.Item);
                    if (order == 0)
                    {
                        return true;
                    }
                    else
                    {
                        current = order <= 0 ? current.Left : current.Right;
                    }
                }
                return false;
            }

            public void CopyTo(T[] array, int arrayIndex)
            {
                foreach (var value in this)
                {
                    array[arrayIndex++] = value;
                }
            }

            public bool Remove(T item)
            {
                // .NET RuntimeのSortedSet<T>はややトリッキーな実装をしている。
                // 値の検索を行う際、検索パスにある全ての2-nodeを3-nodeまたは4-nodeに変更しつつ進んでいくのだが、
                // 各ノードに部分木のサイズを持たせたい場合、実装が難しくなるため、一般的な実装を用いることとする。
                // (削除が失敗した場合はサイズが変わらず、成功した場合のみサイズが変更となるため、パスを保存しておきたいのだが、
                //  木を回転させながら検索を行うと木の親子関係が変化するため、パスも都度変更となってしまう。)

                var found = false;
                Node current = _root;
                var parents = new Stack<Node>(2 * Log2(Count + 1));  // 親ノードのスタック
                parents.Push(null); // 番兵

                while (current != null)
                {
                    parents.Push(current);
                    var order = item.CompareTo(current.Item);
                    if (order == 0)
                    {
                        found = true;
                        break;
                    }
                    else
                    {
                        current = order < 0 ? current.Left : current.Right;
                    }
                }

                if (!found)
                {
                    // 見付からなければreturn
                    return false;
                }

                // 子を2つ持つ場合
                if (current.Left != null && current.Right != null)
                {
                    // 右部分木の最小ノードを探す
                    parents.Push(current.Right);
                    var minNode = GetMinNode(current.Right, parents);

                    // この最小値の値だけもらってしまい、あとはこの最小値ノードを削除することを考えればよい
                    current.Item = minNode.Item;
                    current = minNode;
                }

                // 通ったパス上にある部分木のサイズを全て1だけデクリメント
                parents.Pop();  // これは今から消すので不要
                Count--;
                foreach (var node in parents)
                {
                    if (node != null)
                    {
                        node.Count--;
                    }
                }

                // 切り離した部分をくっつける。子を2つ持つ場合については上で考えたため、子を0or1つ持つ場合を考えればよい
                // 二分木の黒高さが全て等しいという条件より、片方だけ2個以上伸びているということは起こり得ない
                var parent = parents.Peek();
                ReplaceChildOrRoot(parent, current, current.Left ?? current.Right);  // L/Rのどちらかnullでない方。どちらもnullならnullが入る

                // 削除するノードが赤の場合は修正不要
                if (current.IsRed)
                {
                    return true;
                }

                // つなぎ替えられた方の子
                current = current.Left ?? current.Right;

                while ((parent = parents.Pop()) != null)
                {
                    var toFix = DeleteBalance(current, parent, out var newParent);
                    ReplaceChildOrRoot(parents.Peek(), parent, newParent);

                    if (!toFix)
                    {
                        break;
                    }
                    current = newParent;
                }

                if (_root != null)
                {
                    _root.Color = NodeColor.Black;
                }
                return true;
            }

            private static Node GetMinNode(Node current, Stack<Node> parents)
            {
                while (current.Left != null)
                {
                    current = current.Left;
                    parents.Push(current);
                }
                return current;
            }

            public IEnumerator<T> GetEnumerator()
            {
                if (_root != null)
                {
                    var stack = new Stack<Node>(2 * Log2(Count + 1));
                    PushLeft(stack, _root);

                    while (stack.Count > 0)
                    {
                        var current = stack.Pop();
                        yield return current.Item;
                        PushLeft(stack, current.Right);
                    }
                }
            }

            System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => GetEnumerator();

            #endregion

            /// <summary>
            /// <paramref name="item"/>未満の最大の要素を取得します。見付からなかった場合、defaultを返します。
            /// </summary>
            public T GetLessThan(T item)
            {
                var current = _root;
                var result = default(T);

                while (current != null)
                {
                    var order = current.Item.CompareTo(item);
                    if (order < 0)
                    {
                        result = current.Item;
                        current = current.Right;
                    }
                    else
                    {
                        current = current.Left;
                    }
                }

                return result;
            }

            /// <summary>
            /// <paramref name="item"/>以上の最小の要素を取得します。見付からなかった場合、defaultを返します。
            /// </summary>
            public T GetGreaterEqual(T item)
            {
                var current = _root;
                var result = default(T);

                while (current != null)
                {
                    var order = current.Item.CompareTo(item);
                    if (order >= 0)
                    {
                        result = current.Item;
                        current = current.Left;
                    }
                    else
                    {
                        current = current.Right;
                    }
                }

                return result;
            }

            /// <summary>
            /// [<paramref name="inclusiveMin"/>, <paramref name="exclusiveMax"/>)を満たす要素を昇順に列挙します。
            /// </summary>
            /// <param name="inclusiveMin">区間の最小値(それ自身を含む)</param>
            /// <param name="exclusiveMax">区間の最大値(それ自身を含まない)</param>
            /// <returns></returns>
            public IEnumerable<T> EnumerateRange(T inclusiveMin, T exclusiveMax)
            {
                if (_root != null)
                {
                    var stack = new Stack<Node>(2 * Log2(Count + 1));
                    var current = _root;
                    while (current != null)
                    {
                        var order = current.Item.CompareTo(inclusiveMin);
                        if (order >= 0)
                        {
                            stack.Push(current);
                            current = current.Left;
                        }
                        else
                        {
                            current = current.Right;
                        }
                    }

                    while (stack.Count > 0)
                    {
                        current = stack.Pop();
                        var order = current.Item.CompareTo(exclusiveMax);
                        if (order >= 0)
                        {
                            yield break;
                        }
                        else
                        {
                            yield return current.Item;
                            PushLeft(stack, current.Right);
                        }
                    }
                }
            }

            private static void PushLeft(Stack<Node> stack, Node node)
            {
                while (node != null)
                {
                    stack.Push(node);
                    node = node.Left;
                }
            }

            private static int Log2(int n)
            {
                int result = 0;
                while (n > 0)
                {
                    result++;
                    n >>= 1;
                }
                return result;
            }

            // After calling InsertionBalance, we need to make sure `current` and `parent` are up-to-date.
            // It doesn't matter if we keep `grandParent` and `greatGrandParent` up-to-date, because we won't
            // need to split again in the next node.
            // By the time we need to split again, everything will be correctly set.
            private void InsertionBalance(Node current, ref Node parent, Node grandParent, Node greatGrandParent)
            {
                Debug.Assert(parent != null);
                Debug.Assert(grandParent != null);

                var parentIsOnRight = grandParent.Right == parent;
                var currentIsOnRight = parent.Right == current;

                Node newChildOfGreatGrandParent;
                if (parentIsOnRight == currentIsOnRight)
                {
                    // LL or RRなら1回転でOK
                    newChildOfGreatGrandParent = currentIsOnRight ? grandParent.RotateLeft() : grandParent.RotateRight();
                }
                else
                {
                    // LR or RLなら2回転
                    newChildOfGreatGrandParent = currentIsOnRight ? grandParent.RotateLeftRight() : grandParent.RotateRightLeft();
                    // 1回転ごとに1つ上に行くため、2回転させると曾祖父が親になる
                    // リンク先「挿入操作」を参照 http://wwwa.pikara.ne.jp/okojisan/rb-tree/index.html
                    parent = greatGrandParent;
                }

                // 祖父は親の子(1回転)もしくは自分の子(2回転)のいずれかになる
                // この時点で色がRRBもしくはBRRになっているため、BRBに修正
                // リンク先「挿入操作」を参照 http://wwwa.pikara.ne.jp/okojisan/rb-tree/index.html
                grandParent.Color = NodeColor.Red;
                newChildOfGreatGrandParent.Color = NodeColor.Black;

                ReplaceChildOrRoot(greatGrandParent, grandParent, newChildOfGreatGrandParent);
            }

            private bool DeleteBalance(Node current, Node parent, out Node newParent)
            {
                // 削除パターンは大きく分けて4つ
                // See: http://wwwa.pikara.ne.jp/okojisan/rb-tree/index.html

                // currentはもともと黒なので(黒でなければ修正する必要がないため)、兄弟はnullにはなり得ない
                var sibling = parent.GetSibling(current);
                if (sibling.IsBlack)
                {
                    if (Node.IsNonNullRed(sibling.Left) || Node.IsNonNullRed(sibling.Right))
                    {
                        var parentColor = parent.Color;
                        var siblingRedChild = Node.IsNonNullRed(sibling.Left) ? sibling.Left : sibling.Right;
                        var currentIsOnRight = parent.Right == current;
                        var siblingRedChildIsRight = sibling.Right == siblingRedChild;

                        if (currentIsOnRight != siblingRedChildIsRight)
                        {
                            // 1回転
                            parent.Color = NodeColor.Black;
                            sibling.Color = parentColor;
                            siblingRedChild.Color = NodeColor.Black;
                            newParent = currentIsOnRight ? parent.RotateRight() : parent.RotateLeft();
                        }
                        else
                        {
                            // 2回転
                            parent.Color = NodeColor.Black;
                            siblingRedChild.Color = parentColor;
                            newParent = currentIsOnRight ? parent.RotateLeftRight() : parent.RotateRightLeft();
                        }

                        return false;
                    }
                    else
                    {
                        var needToFix = parent.IsBlack;
                        parent.Color = NodeColor.Black;
                        sibling.Color = NodeColor.Red;
                        newParent = parent;
                        return needToFix;
                    }
                }
                else
                {
                    if (current == parent.Right)
                    {
                        newParent = parent.RotateRight();
                    }
                    else
                    {
                        newParent = parent.RotateLeft();
                    }

                    parent.Color = NodeColor.Red;
                    sibling.Color = NodeColor.Black;
                    DeleteBalance(current, parent, out var newChildOfParent);  // 再帰は1回限り
                    ReplaceChildOrRoot(newParent, parent, newChildOfParent);
                    return false;
                }
            }

            /// <summary>
            /// 親ノードの子を新しいものに差し替える。ただし親がいなければrootとする。
            /// </summary>
            /// <param name="parent"></param>
            /// <param name="child"></param>
            /// <param name="newChild"></param>
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private void ReplaceChildOrRoot(Node parent, Node child, Node newChild)
            {
                if (parent != null)
                {
                    parent.ReplaceChild(child, newChild);
                }
                else
                {
                    _root = newChild;
                }
            }

            #region Debugging

            [Conditional("DEBUG")]
            internal void PrintTree() => PrintTree(_root, 0);

            [Conditional("DEBUG")]
            private void PrintTree(Node node, int depth)
            {
                const int Space = 6;
                if (node != null)
                {
                    PrintTree(node.Right, depth + 1);
                    if (node.IsRed)
                    {
                        Console.ForegroundColor = ConsoleColor.Red;
                        Console.Write(string.Concat(Enumerable.Repeat(' ', Space * depth)));
                        Console.WriteLine($"{node.Item} ({node.Count})");
                        Console.ResetColor();
                    }
                    else
                    {
                        Console.Write(string.Concat(Enumerable.Repeat(' ', Space * depth)));
                        Console.WriteLine($"{node.Item} ({node.Count})");
                    }
                    PrintTree(node.Left, depth + 1);
                }
            }

            [Conditional("DEBUG")]
            internal void AssertCorrectRedBrackTree() => AssertCorrectRedBrackTree(_root);

            private int AssertCorrectRedBrackTree(Node node)
            {
                if (node != null)
                {
                    // Redが2つ繋がっていないか?
                    Debug.Assert(!(node.IsRed && Node.IsNonNullRed(node.Left)));
                    Debug.Assert(!(node.IsRed && Node.IsNonNullRed(node.Right)));

                    // 左右の黒高さは等しいか?
                    var left = AssertCorrectRedBrackTree(node.Left);
                    var right = AssertCorrectRedBrackTree(node.Right);
                    Debug.Assert(left == right);
                    if (node.IsBlack)
                    {
                        left++;
                    }
                    return left;
                }
                else
                {
                    return 0;
                }
            }

            #endregion

            protected enum NodeColor : byte
            {
                Black,
                Red
            }

            [DebuggerDisplay("Item = {Item}, Size = {Count}")]
            protected sealed class Node
            {
                public T Item { get; set; }
                public Node Left { get; set; }
                public Node Right { get; set; }
                public NodeColor Color { get; set; }
                /// <summary>部分木のサイズ</summary>
                public int Count { get; set; }

                public bool IsBlack => Color == NodeColor.Black;
                public bool IsRed => Color == NodeColor.Red;
                public bool Is2Node => IsBlack && IsNullOrBlack(Left) && IsNullOrBlack(Right);
                public bool Is4Node => IsNonNullRed(Left) && IsNonNullRed(Right);

                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                private void UpdateCount() => Count = GetCountOrDefault(Left) + GetCountOrDefault(Right) + 1;
                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public static bool IsNonNullBlack(Node node) => node != null && node.IsBlack;
                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public static bool IsNonNullRed(Node node) => node != null && node.IsRed;
                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public static bool IsNullOrBlack(Node node) => node == null || node.IsBlack;
                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                private static int GetCountOrDefault(Node node) => node?.Count ?? 0;    // C# 6.0 or later

                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public Node(T item, NodeColor color)
                {
                    Item = item;
                    Color = color;
                    Count = 1;
                }

                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public void Split4Node()
                {
                    Color = NodeColor.Red;
                    Left.Color = NodeColor.Black;
                    Right.Color = NodeColor.Black;
                }

                // 各種Rotateでは位置関係だけ修正する。色までは修正しない。
                // 親になったノード(部分木の根)を返り値とする。
                // childとかgrandChildとかは祖父(Rotate前の3世代中一番上)目線での呼び方
                public Node RotateLeft()
                {
                    // 右の子が自分の親になる
                    var child = Right;
                    Right = child.Left;
                    child.Left = this;
                    UpdateCount();
                    child.UpdateCount();
                    return child;
                }

                public Node RotateRight()
                {
                    // 左の子が自分の親になる
                    var child = Left;
                    Left = child.Right;
                    child.Right = this;
                    UpdateCount();
                    child.UpdateCount();
                    return child;
                }

                public Node RotateLeftRight()
                {
                    var child = Left;
                    var grandChild = child.Right;

                    Left = grandChild.Right;
                    grandChild.Right = this;
                    child.Right = grandChild.Left;
                    grandChild.Left = child;
                    UpdateCount();
                    child.UpdateCount();
                    grandChild.UpdateCount();
                    return grandChild;
                }

                public Node RotateRightLeft()
                {
                    var child = Right;
                    var grandChild = child.Left;

                    Right = grandChild.Left;
                    grandChild.Left = this;
                    child.Left = grandChild.Right;
                    grandChild.Right = child;
                    UpdateCount();
                    child.UpdateCount();
                    grandChild.UpdateCount();
                    return grandChild;
                }

                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public void ReplaceChild(Node child, Node newChild)
                {
                    if (Left == child)
                    {
                        Left = newChild;
                    }
                    else
                    {
                        Right = newChild;
                    }
                }

                /// <summary>
                /// 兄弟を取得する。
                /// </summary>
                /// <param name="node"></param>
                /// <returns></returns>
                [MethodImpl(MethodImplOptions.AggressiveInlining)]
                public Node GetSibling(Node node) => node == Left ? Right : Left;

                /// <summary>
                /// 左右の2-nodeを4-nodeにマージする。
                /// </summary>
                public void Merge2Nodes()
                {
                    Color = NodeColor.Black;
                    Left.Color = NodeColor.Red;
                    Right.Color = NodeColor.Red;
                }
            }
        }

    }
}

namespace YukicoderContest328
{
    internal class Program
    {
        static void Main(string[] args)
        {
            IProblem question = new ProblemA();
            using var io = new IOManager(Console.OpenStandardInput(), Console.OpenStandardOutput());
            question.Solve(io);
        }
    }
}

#region Base Class

namespace YukicoderContest328.Problems
{
    public interface IProblem
    {
        string Solve(string input);
        void Solve(IOManager io);
    }

    public abstract class ProblemBase : IProblem
    {
        protected bool HasMultiTestCases { get; }

        protected ProblemBase(bool hasMultiTestCases) => HasMultiTestCases = hasMultiTestCases;

        public string Solve(string input)
        {
            var inputStream = new MemoryStream(Encoding.UTF8.GetBytes(input));
            var outputStream = new MemoryStream();
            using var manager = new IOManager(inputStream, outputStream);

            Solve(manager);
            manager.Flush();

            outputStream.Seek(0, SeekOrigin.Begin);
            var reader = new StreamReader(outputStream);
            return reader.ReadToEnd();
        }

        public void Solve(IOManager io)
        {
            var tests = HasMultiTestCases ? io.ReadInt() : 1;

            for (var t = 0; t < tests; t++)
            {
                SolveEach(io);
            }
        }

        protected abstract void SolveEach(IOManager io);
    }
}

#endregion

#region Utils

namespace YukicoderContest328
{
    public class IOManager : IDisposable
    {
        private readonly BinaryReader _reader;
        private readonly StreamWriter _writer;
        private bool _disposedValue;
        private byte[] _buffer = new byte[1024];
        private int _length;
        private int _cursor;
        private bool _eof;

        const char ValidFirstChar = '!';
        const char ValidLastChar = '~';

        public IOManager(Stream input, Stream output)
        {
            _reader = new BinaryReader(input);
            _writer = new StreamWriter(output) { AutoFlush = false };
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private char ReadAscii()
        {
            if (_cursor == _length)
            {
                _cursor = 0;
                _length = _reader.Read(_buffer);

                if (_length == 0)
                {
                    if (!_eof)
                    {
                        _eof = true;
                        return char.MinValue;
                    }
                    else
                    {
                        ThrowEndOfStreamException();
                    }
                }
            }

            return (char)_buffer[_cursor++];
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public char ReadChar()
        {
            char c;
            while (!IsValidChar(c = ReadAscii())) { }
            return c;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public string ReadString()
        {
            var builder = new StringBuilder();
            char c;
            while (!IsValidChar(c = ReadAscii())) { }

            do
            {
                builder.Append(c);
            } while (IsValidChar(c = ReadAscii()));

            return builder.ToString();
        }

        public int ReadInt() => (int)ReadLong();

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public long ReadLong()
        {
            long result = 0;
            bool isPositive = true;
            char c;

            while (!IsNumericChar(c = ReadAscii())) { }

            if (c == '-')
            {
                isPositive = false;
                c = ReadAscii();
            }

            do
            {
                result *= 10;
                result += c - '0';
            } while (IsNumericChar(c = ReadAscii()));

            return isPositive ? result : -result;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private Span<char> ReadChunk(Span<char> span)
        {
            var i = 0;
            char c;
            while (!IsValidChar(c = ReadAscii())) { }

            do
            {
                span[i++] = c;
            } while (IsValidChar(c = ReadAscii()));

            return span.Slice(0, i);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public double ReadDouble() => double.Parse(ReadChunk(stackalloc char[32]));

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public decimal ReadDecimal() => decimal.Parse(ReadChunk(stackalloc char[32]));

        public int[] ReadIntArray(int n)
        {
            var a = new int[n];
            for (int i = 0; i < a.Length; i++)
            {
                a[i] = ReadInt();
            }
            return a;
        }

        public long[] ReadLongArray(int n)
        {
            var a = new long[n];
            for (int i = 0; i < a.Length; i++)
            {
                a[i] = ReadLong();
            }
            return a;
        }

        public double[] ReadDoubleArray(int n)
        {
            var a = new double[n];
            for (int i = 0; i < a.Length; i++)
            {
                a[i] = ReadDouble();
            }
            return a;
        }

        public decimal[] ReadDecimalArray(int n)
        {
            var a = new decimal[n];
            for (int i = 0; i < a.Length; i++)
            {
                a[i] = ReadDecimal();
            }
            return a;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Write<T>(T value) => _writer.Write(value.ToString());

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void WriteLine<T>(T value) => _writer.WriteLine(value.ToString());

        public void WriteLine<T>(IEnumerable<T> values, char separator)
        {
            var e = values.GetEnumerator();
            if (e.MoveNext())
            {
                _writer.Write(e.Current.ToString());

                while (e.MoveNext())
                {
                    _writer.Write(separator);
                    _writer.Write(e.Current.ToString());
                }
            }

            _writer.WriteLine();
        }

        public void WriteLine<T>(T[] values, char separator) => WriteLine((ReadOnlySpan<T>)values, separator);
        public void WriteLine<T>(Span<T> values, char separator) => WriteLine((ReadOnlySpan<T>)values, separator);

        public void WriteLine<T>(ReadOnlySpan<T> values, char separator)
        {
            for (int i = 0; i < values.Length - 1; i++)
            {
                _writer.Write(values[i]);
                _writer.Write(separator);
            }

            if (values.Length > 0)
            {
                _writer.Write(values[^1]);
            }

            _writer.WriteLine();
        }

        public void Flush() => _writer.Flush();

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool IsValidChar(char c) => ValidFirstChar <= c && c <= ValidLastChar;

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool IsNumericChar(char c) => ('0' <= c && c <= '9') || c == '-';

        private void ThrowEndOfStreamException() => throw new EndOfStreamException();

        protected virtual void Dispose(bool disposing)
        {
            if (!_disposedValue)
            {
                if (disposing)
                {
                    _reader.Dispose();
                    _writer.Flush();
                    _writer.Dispose();
                }

                _disposedValue = true;
            }
        }

        public void Dispose()
        {
            Dispose(disposing: true);
            GC.SuppressFinalize(this);
        }
    }

    public static class UtilExtensions
    {
        public static bool ChangeMax<T>(ref this T value, T other) where T : struct, IComparable<T>
        {
            if (value.CompareTo(other) < 0)
            {
                value = other;
                return true;
            }
            return false;
        }

        public static bool ChangeMin<T>(ref this T value, T other) where T : struct, IComparable<T>
        {
            if (value.CompareTo(other) > 0)
            {
                value = other;
                return true;
            }
            return false;
        }

        public static void SwapIfLargerThan<T>(ref this T a, ref T b) where T : struct, IComparable<T>
        {
            if (a.CompareTo(b) > 0)
            {
                (a, b) = (b, a);
            }
        }

        public static void SwapIfSmallerThan<T>(ref this T a, ref T b) where T : struct, IComparable<T>
        {
            if (a.CompareTo(b) < 0)
            {
                (a, b) = (b, a);
            }
        }

        public static void Sort<T>(this T[] array) where T : IComparable<T> => Array.Sort(array);
        public static void Sort<T>(this T[] array, Comparison<T> comparison) => Array.Sort(array, comparison);
    }

    public static class CollectionExtensions
    {
        private class ArrayWrapper<T>
        {
#pragma warning disable CS0649
            public T[] Array;
#pragma warning restore CS0649
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static Span<T> AsSpan<T>(this List<T> list)
        {
            return Unsafe.As<ArrayWrapper<T>>(list).Array.AsSpan(0, list.Count);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static Span<T> GetRowSpan<T>(this T[,] array, int i)
        {
            var width = array.GetLength(1);
            return MemoryMarshal.CreateSpan(ref array[i, 0], width);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static Span<T> GetRowSpan<T>(this T[,,] array, int i, int j)
        {
            var width = array.GetLength(2);
            return MemoryMarshal.CreateSpan(ref array[i, j, 0], width);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static Span<T> GetRowSpan<T>(this T[,,,] array, int i, int j, int k)
        {
            var width = array.GetLength(3);
            return MemoryMarshal.CreateSpan(ref array[i, j, k, 0], width);
        }

        public static void Fill<T>(this T[] array, T value) => array.AsSpan().Fill(value);
        public static void Fill<T>(this T[,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(value);
        public static void Fill<T>(this T[,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(value);
        public static void Fill<T>(this T[,,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(value);
    }

    public static class SearchExtensions
    {
        private struct LowerBoundComparer<T> : IComparer<T> where T : IComparable<T>
        {
            public int Compare(T x, T y) => 0 <= x.CompareTo(y) ? 1 : -1;
        }

        private struct UpperBoundComparer<T> : IComparer<T> where T : IComparable<T>
        {
            public int Compare(T x, T y) => 0 < x.CompareTo(y) ? 1 : -1;
        }

        // https://trsing.hatenablog.com/entry/2019/08/27/211038
        public static int GetGreaterEqualIndex<T>(this ReadOnlySpan<T> span, T inclusiveMin) where T : IComparable<T> => ~span.BinarySearch(inclusiveMin, new UpperBoundComparer<T>());
        public static int GetGreaterThanIndex<T>(this ReadOnlySpan<T> span, T exclusiveMin) where T : IComparable<T> => ~span.BinarySearch(exclusiveMin, new LowerBoundComparer<T>());
        public static int GetLessEqualIndex<T>(this ReadOnlySpan<T> span, T inclusiveMax) where T : IComparable<T> => ~span.BinarySearch(inclusiveMax, new LowerBoundComparer<T>()) - 1;
        public static int GetLessThanIndex<T>(this ReadOnlySpan<T> span, T exclusiveMax) where T : IComparable<T> => ~span.BinarySearch(exclusiveMax, new UpperBoundComparer<T>()) - 1;
        public static int GetGreaterEqualIndex<T>(this Span<T> span, T inclusiveMin) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetGreaterEqualIndex(inclusiveMin);
        public static int GetGreaterThanIndex<T>(this Span<T> span, T exclusiveMin) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetGreaterThanIndex(exclusiveMin);
        public static int GetLessEqualIndex<T>(this Span<T> span, T inclusiveMax) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetLessEqualIndex(inclusiveMax);
        public static int GetLessThanIndex<T>(this Span<T> span, T exclusiveMax) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetLessThanIndex(exclusiveMax);

        public static int BoundaryBinarySearch(Predicate<int> predicate, int ok, int ng)
        {
            while (Math.Abs(ok - ng) > 1)
            {
                var mid = (ok + ng) / 2;
                if (predicate(mid))
                {
                    ok = mid;
                }
                else
                {
                    ng = mid;
                }
            }
            return ok;
        }

        public static long BoundaryBinarySearch(Predicate<long> predicate, long ok, long ng)
        {
            while (Math.Abs(ok - ng) > 1)
            {
                var mid = (ok + ng) / 2;
                if (predicate(mid))
                {
                    ok = mid;
                }
                else
                {
                    ng = mid;
                }
            }
            return ok;
        }

        public static BigInteger BoundaryBinarySearch(Predicate<BigInteger> predicate, BigInteger ok, BigInteger ng)
        {
            while (BigInteger.Abs(ok - ng) > 1)
            {
                var mid = (ok + ng) / 2;
                if (predicate(mid))
                {
                    ok = mid;
                }
                else
                {
                    ng = mid;
                }
            }
            return ok;
        }

        public static double BoundaryBinarySearch(Predicate<double> predicate, double ok, double ng, double eps = 1e-9, int loopLimit = 1000)
        {
            var count = 0;

            while (Math.Abs(ok - ng) > eps && count++ < loopLimit)
            {
                var mid = (ok + ng) * 0.5;
                if (predicate(mid))
                {
                    ok = mid;
                }
                else
                {
                    ng = mid;
                }
            }

            return (ok + ng) * 0.5;
        }

        public static double Bisection(Func<double, double> f, double a, double b, double eps = 1e-9, int loopLimit = 100)
        {
            double mid = (a + b) / 2;
            var fa = f(a);

            if (fa * f(b) >= 0)
            {
                throw new ArgumentException("f(a)とf(b)は異符号である必要があります。");
            }

            for (int i = 0; i < loopLimit; i++)
            {
                var fmid = f(mid);
                var sign = fa * fmid;

                if (sign < 0)
                {
                    b = mid;
                }
                else if (sign > 0)
                {
                    a = mid;
                    fa = fmid;
                }
                else
                {
                    return mid;
                }

                mid = (a + b) / 2;

                if (Math.Abs(b - a) < eps)
                {
                    break;
                }
            }
            return mid;
        }
    }
}

#endregion

0