結果
| 問題 |
No.1816 MUL-DIV Game
|
| コンテスト | |
| ユーザー |
👑 terry_u16
|
| 提出日時 | 2022-01-21 21:45:37 |
| 言語 | C# (.NET 8.0.404) |
| 結果 |
AC
|
| 実行時間 | 525 ms / 2,000 ms |
| コード長 | 45,424 bytes |
| コンパイル時間 | 10,570 ms |
| コンパイル使用メモリ | 165,824 KB |
| 実行使用メモリ | 221,288 KB |
| 最終ジャッジ日時 | 2024-11-25 23:23:49 |
| 合計ジャッジ時間 | 15,985 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (100 ms)。 MSBuild のバージョン 17.9.6+a4ecab324 (.NET) main -> /home/judge/data/code/bin/Release/net8.0/main.dll main -> /home/judge/data/code/bin/Release/net8.0/publish/
ソースコード
using System;
using System.Buffers;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics.X86;
using System.Text;
using YukicoderContest328.Problems;
namespace YukicoderContest328.Problems
{
public class ProblemA : ProblemBase
{
public ProblemA() : base(false) { }
[MethodImpl(MethodImplOptions.AggressiveOptimization)]
protected override void SolveEach(IOManager io)
{
var n = io.ReadInt();
var a = io.ReadLongArray(n);
var set = new RedBlackTree<long>();
foreach (var ai in a)
{
set.Add(ai);
}
var i = 0;
while (set.Count > 1)
{
if (i % 2 == 0)
{
var x = set.Min;
set.Remove(x);
var y = set.Min;
set.Remove(y);
set.Add(x * y);
}
else
{
var y = set.Max;
set.Remove(y);
var x = set.Max;
set.Remove(x);
set.Add((x + y - 1) / y);
}
i++;
}
io.WriteLine(set.Min);
}
/// <summary>
/// <para>Red-Black tree which allows duplicated values (like multiset).</para>
/// <para>Based on .NET Runtime https://github.com/dotnet/runtime/blob/master/src/libraries/System.Collections/src/System/Collections/Generic/SortedSet.cs </para>
/// </summary>
/// <typeparam name="T"></typeparam>
///
/// .NET Runtime
/// Copyright (c) .NET Foundation and Contributors
/// Released under the MIT license
/// https://github.com/dotnet/runtime/blob/master/LICENSE.TXT
public class RedBlackTree<T> : ICollection<T>, IReadOnlyCollection<T> where T : IComparable<T>
{
public int Count { get; private set; }
public bool IsReadOnly => false;
protected Node _root;
public T this[Index index]
{
get
{
var i = index.GetOffset(Count);
if (unchecked((uint)i) >= Count)
{
throw new ArgumentOutOfRangeException(nameof(index));
}
var current = _root;
while (true)
{
var leftCount = current.Left?.Count ?? 0;
if (leftCount == i)
{
return current.Item;
}
else if (leftCount > i)
{
current = current.Left;
}
else
{
i -= leftCount + 1;
current = current.Right;
}
}
}
}
/// <summary>
/// 最小の要素を返します。要素が空の場合、default値を返します。
/// </summary>
public T Min
{
get
{
if (_root == null)
{
return default;
}
else
{
var current = _root;
while (current.Left != null)
{
current = current.Left;
}
return current.Item;
}
}
}
/// <summary>
/// 最大の要素を返します。要素が空の場合、default値を返します。
/// </summary>
public T Max
{
get
{
if (_root == null)
{
return default;
}
else
{
var current = _root;
while (current.Right != null)
{
current = current.Right;
}
return current.Item;
}
}
}
#region ICollection<T> members
public void Add(T item)
{
if (_root == null)
{
_root = new Node(item, NodeColor.Black);
Count = 1;
return;
}
Node current = _root;
Node parent = null;
Node grandParent = null; // 親、祖父はRotateで直接いじる
Node greatGrandParent = null; // 曾祖父はRotate後のつなぎ替えで使う(2回Rotateすると曾祖父がcurrentの親になる)
var order = 0;
while (current != null)
{
current.Count++; // 部分木サイズ++
order = item.CompareTo(current.Item);
if (current.Is4Node)
{
// 4-node (RBR) の場合は2-node x 2 (BRB) に変更
current.Split4Node();
if (Node.IsNonNullRed(parent))
{
// Splitの結果親と2連続でRRになったら修正
InsertionBalance(current, ref parent, grandParent, greatGrandParent);
}
}
greatGrandParent = grandParent;
grandParent = parent;
parent = current;
current = order <= 0 ? current.Left : current.Right;
}
var newNode = new Node(item, NodeColor.Red);
if (order <= 0)
{
parent.Left = newNode;
}
else
{
parent.Right = newNode;
}
if (parent.IsRed)
{
// Redの親がRedのときは修正
InsertionBalance(newNode, ref parent, grandParent, greatGrandParent);
}
_root.Color = NodeColor.Black; // rootは常にBlack(Red->Blackとなったとき木全体の黒高さが1増える)
Count++;
}
public void Clear()
{
_root = null;
Count = 0;
}
public bool Contains(T item)
{
var current = _root;
while (current != null)
{
var order = item.CompareTo(current.Item);
if (order == 0)
{
return true;
}
else
{
current = order <= 0 ? current.Left : current.Right;
}
}
return false;
}
public void CopyTo(T[] array, int arrayIndex)
{
foreach (var value in this)
{
array[arrayIndex++] = value;
}
}
public bool Remove(T item)
{
// .NET RuntimeのSortedSet<T>はややトリッキーな実装をしている。
// 値の検索を行う際、検索パスにある全ての2-nodeを3-nodeまたは4-nodeに変更しつつ進んでいくのだが、
// 各ノードに部分木のサイズを持たせたい場合、実装が難しくなるため、一般的な実装を用いることとする。
// (削除が失敗した場合はサイズが変わらず、成功した場合のみサイズが変更となるため、パスを保存しておきたいのだが、
// 木を回転させながら検索を行うと木の親子関係が変化するため、パスも都度変更となってしまう。)
var found = false;
Node current = _root;
var parents = new Stack<Node>(2 * Log2(Count + 1)); // 親ノードのスタック
parents.Push(null); // 番兵
while (current != null)
{
parents.Push(current);
var order = item.CompareTo(current.Item);
if (order == 0)
{
found = true;
break;
}
else
{
current = order < 0 ? current.Left : current.Right;
}
}
if (!found)
{
// 見付からなければreturn
return false;
}
// 子を2つ持つ場合
if (current.Left != null && current.Right != null)
{
// 右部分木の最小ノードを探す
parents.Push(current.Right);
var minNode = GetMinNode(current.Right, parents);
// この最小値の値だけもらってしまい、あとはこの最小値ノードを削除することを考えればよい
current.Item = minNode.Item;
current = minNode;
}
// 通ったパス上にある部分木のサイズを全て1だけデクリメント
parents.Pop(); // これは今から消すので不要
Count--;
foreach (var node in parents)
{
if (node != null)
{
node.Count--;
}
}
// 切り離した部分をくっつける。子を2つ持つ場合については上で考えたため、子を0or1つ持つ場合を考えればよい
// 二分木の黒高さが全て等しいという条件より、片方だけ2個以上伸びているということは起こり得ない
var parent = parents.Peek();
ReplaceChildOrRoot(parent, current, current.Left ?? current.Right); // L/Rのどちらかnullでない方。どちらもnullならnullが入る
// 削除するノードが赤の場合は修正不要
if (current.IsRed)
{
return true;
}
// つなぎ替えられた方の子
current = current.Left ?? current.Right;
while ((parent = parents.Pop()) != null)
{
var toFix = DeleteBalance(current, parent, out var newParent);
ReplaceChildOrRoot(parents.Peek(), parent, newParent);
if (!toFix)
{
break;
}
current = newParent;
}
if (_root != null)
{
_root.Color = NodeColor.Black;
}
return true;
}
private static Node GetMinNode(Node current, Stack<Node> parents)
{
while (current.Left != null)
{
current = current.Left;
parents.Push(current);
}
return current;
}
public IEnumerator<T> GetEnumerator()
{
if (_root != null)
{
var stack = new Stack<Node>(2 * Log2(Count + 1));
PushLeft(stack, _root);
while (stack.Count > 0)
{
var current = stack.Pop();
yield return current.Item;
PushLeft(stack, current.Right);
}
}
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => GetEnumerator();
#endregion
/// <summary>
/// <paramref name="item"/>未満の最大の要素を取得します。見付からなかった場合、defaultを返します。
/// </summary>
public T GetLessThan(T item)
{
var current = _root;
var result = default(T);
while (current != null)
{
var order = current.Item.CompareTo(item);
if (order < 0)
{
result = current.Item;
current = current.Right;
}
else
{
current = current.Left;
}
}
return result;
}
/// <summary>
/// <paramref name="item"/>以上の最小の要素を取得します。見付からなかった場合、defaultを返します。
/// </summary>
public T GetGreaterEqual(T item)
{
var current = _root;
var result = default(T);
while (current != null)
{
var order = current.Item.CompareTo(item);
if (order >= 0)
{
result = current.Item;
current = current.Left;
}
else
{
current = current.Right;
}
}
return result;
}
/// <summary>
/// [<paramref name="inclusiveMin"/>, <paramref name="exclusiveMax"/>)を満たす要素を昇順に列挙します。
/// </summary>
/// <param name="inclusiveMin">区間の最小値(それ自身を含む)</param>
/// <param name="exclusiveMax">区間の最大値(それ自身を含まない)</param>
/// <returns></returns>
public IEnumerable<T> EnumerateRange(T inclusiveMin, T exclusiveMax)
{
if (_root != null)
{
var stack = new Stack<Node>(2 * Log2(Count + 1));
var current = _root;
while (current != null)
{
var order = current.Item.CompareTo(inclusiveMin);
if (order >= 0)
{
stack.Push(current);
current = current.Left;
}
else
{
current = current.Right;
}
}
while (stack.Count > 0)
{
current = stack.Pop();
var order = current.Item.CompareTo(exclusiveMax);
if (order >= 0)
{
yield break;
}
else
{
yield return current.Item;
PushLeft(stack, current.Right);
}
}
}
}
private static void PushLeft(Stack<Node> stack, Node node)
{
while (node != null)
{
stack.Push(node);
node = node.Left;
}
}
private static int Log2(int n)
{
int result = 0;
while (n > 0)
{
result++;
n >>= 1;
}
return result;
}
// After calling InsertionBalance, we need to make sure `current` and `parent` are up-to-date.
// It doesn't matter if we keep `grandParent` and `greatGrandParent` up-to-date, because we won't
// need to split again in the next node.
// By the time we need to split again, everything will be correctly set.
private void InsertionBalance(Node current, ref Node parent, Node grandParent, Node greatGrandParent)
{
Debug.Assert(parent != null);
Debug.Assert(grandParent != null);
var parentIsOnRight = grandParent.Right == parent;
var currentIsOnRight = parent.Right == current;
Node newChildOfGreatGrandParent;
if (parentIsOnRight == currentIsOnRight)
{
// LL or RRなら1回転でOK
newChildOfGreatGrandParent = currentIsOnRight ? grandParent.RotateLeft() : grandParent.RotateRight();
}
else
{
// LR or RLなら2回転
newChildOfGreatGrandParent = currentIsOnRight ? grandParent.RotateLeftRight() : grandParent.RotateRightLeft();
// 1回転ごとに1つ上に行くため、2回転させると曾祖父が親になる
// リンク先「挿入操作」を参照 http://wwwa.pikara.ne.jp/okojisan/rb-tree/index.html
parent = greatGrandParent;
}
// 祖父は親の子(1回転)もしくは自分の子(2回転)のいずれかになる
// この時点で色がRRBもしくはBRRになっているため、BRBに修正
// リンク先「挿入操作」を参照 http://wwwa.pikara.ne.jp/okojisan/rb-tree/index.html
grandParent.Color = NodeColor.Red;
newChildOfGreatGrandParent.Color = NodeColor.Black;
ReplaceChildOrRoot(greatGrandParent, grandParent, newChildOfGreatGrandParent);
}
private bool DeleteBalance(Node current, Node parent, out Node newParent)
{
// 削除パターンは大きく分けて4つ
// See: http://wwwa.pikara.ne.jp/okojisan/rb-tree/index.html
// currentはもともと黒なので(黒でなければ修正する必要がないため)、兄弟はnullにはなり得ない
var sibling = parent.GetSibling(current);
if (sibling.IsBlack)
{
if (Node.IsNonNullRed(sibling.Left) || Node.IsNonNullRed(sibling.Right))
{
var parentColor = parent.Color;
var siblingRedChild = Node.IsNonNullRed(sibling.Left) ? sibling.Left : sibling.Right;
var currentIsOnRight = parent.Right == current;
var siblingRedChildIsRight = sibling.Right == siblingRedChild;
if (currentIsOnRight != siblingRedChildIsRight)
{
// 1回転
parent.Color = NodeColor.Black;
sibling.Color = parentColor;
siblingRedChild.Color = NodeColor.Black;
newParent = currentIsOnRight ? parent.RotateRight() : parent.RotateLeft();
}
else
{
// 2回転
parent.Color = NodeColor.Black;
siblingRedChild.Color = parentColor;
newParent = currentIsOnRight ? parent.RotateLeftRight() : parent.RotateRightLeft();
}
return false;
}
else
{
var needToFix = parent.IsBlack;
parent.Color = NodeColor.Black;
sibling.Color = NodeColor.Red;
newParent = parent;
return needToFix;
}
}
else
{
if (current == parent.Right)
{
newParent = parent.RotateRight();
}
else
{
newParent = parent.RotateLeft();
}
parent.Color = NodeColor.Red;
sibling.Color = NodeColor.Black;
DeleteBalance(current, parent, out var newChildOfParent); // 再帰は1回限り
ReplaceChildOrRoot(newParent, parent, newChildOfParent);
return false;
}
}
/// <summary>
/// 親ノードの子を新しいものに差し替える。ただし親がいなければrootとする。
/// </summary>
/// <param name="parent"></param>
/// <param name="child"></param>
/// <param name="newChild"></param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void ReplaceChildOrRoot(Node parent, Node child, Node newChild)
{
if (parent != null)
{
parent.ReplaceChild(child, newChild);
}
else
{
_root = newChild;
}
}
#region Debugging
[Conditional("DEBUG")]
internal void PrintTree() => PrintTree(_root, 0);
[Conditional("DEBUG")]
private void PrintTree(Node node, int depth)
{
const int Space = 6;
if (node != null)
{
PrintTree(node.Right, depth + 1);
if (node.IsRed)
{
Console.ForegroundColor = ConsoleColor.Red;
Console.Write(string.Concat(Enumerable.Repeat(' ', Space * depth)));
Console.WriteLine($"{node.Item} ({node.Count})");
Console.ResetColor();
}
else
{
Console.Write(string.Concat(Enumerable.Repeat(' ', Space * depth)));
Console.WriteLine($"{node.Item} ({node.Count})");
}
PrintTree(node.Left, depth + 1);
}
}
[Conditional("DEBUG")]
internal void AssertCorrectRedBrackTree() => AssertCorrectRedBrackTree(_root);
private int AssertCorrectRedBrackTree(Node node)
{
if (node != null)
{
// Redが2つ繋がっていないか?
Debug.Assert(!(node.IsRed && Node.IsNonNullRed(node.Left)));
Debug.Assert(!(node.IsRed && Node.IsNonNullRed(node.Right)));
// 左右の黒高さは等しいか?
var left = AssertCorrectRedBrackTree(node.Left);
var right = AssertCorrectRedBrackTree(node.Right);
Debug.Assert(left == right);
if (node.IsBlack)
{
left++;
}
return left;
}
else
{
return 0;
}
}
#endregion
protected enum NodeColor : byte
{
Black,
Red
}
[DebuggerDisplay("Item = {Item}, Size = {Count}")]
protected sealed class Node
{
public T Item { get; set; }
public Node Left { get; set; }
public Node Right { get; set; }
public NodeColor Color { get; set; }
/// <summary>部分木のサイズ</summary>
public int Count { get; set; }
public bool IsBlack => Color == NodeColor.Black;
public bool IsRed => Color == NodeColor.Red;
public bool Is2Node => IsBlack && IsNullOrBlack(Left) && IsNullOrBlack(Right);
public bool Is4Node => IsNonNullRed(Left) && IsNonNullRed(Right);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void UpdateCount() => Count = GetCountOrDefault(Left) + GetCountOrDefault(Right) + 1;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsNonNullBlack(Node node) => node != null && node.IsBlack;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsNonNullRed(Node node) => node != null && node.IsRed;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsNullOrBlack(Node node) => node == null || node.IsBlack;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static int GetCountOrDefault(Node node) => node?.Count ?? 0; // C# 6.0 or later
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public Node(T item, NodeColor color)
{
Item = item;
Color = color;
Count = 1;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Split4Node()
{
Color = NodeColor.Red;
Left.Color = NodeColor.Black;
Right.Color = NodeColor.Black;
}
// 各種Rotateでは位置関係だけ修正する。色までは修正しない。
// 親になったノード(部分木の根)を返り値とする。
// childとかgrandChildとかは祖父(Rotate前の3世代中一番上)目線での呼び方
public Node RotateLeft()
{
// 右の子が自分の親になる
var child = Right;
Right = child.Left;
child.Left = this;
UpdateCount();
child.UpdateCount();
return child;
}
public Node RotateRight()
{
// 左の子が自分の親になる
var child = Left;
Left = child.Right;
child.Right = this;
UpdateCount();
child.UpdateCount();
return child;
}
public Node RotateLeftRight()
{
var child = Left;
var grandChild = child.Right;
Left = grandChild.Right;
grandChild.Right = this;
child.Right = grandChild.Left;
grandChild.Left = child;
UpdateCount();
child.UpdateCount();
grandChild.UpdateCount();
return grandChild;
}
public Node RotateRightLeft()
{
var child = Right;
var grandChild = child.Left;
Right = grandChild.Left;
grandChild.Left = this;
child.Left = grandChild.Right;
grandChild.Right = child;
UpdateCount();
child.UpdateCount();
grandChild.UpdateCount();
return grandChild;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void ReplaceChild(Node child, Node newChild)
{
if (Left == child)
{
Left = newChild;
}
else
{
Right = newChild;
}
}
/// <summary>
/// 兄弟を取得する。
/// </summary>
/// <param name="node"></param>
/// <returns></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public Node GetSibling(Node node) => node == Left ? Right : Left;
/// <summary>
/// 左右の2-nodeを4-nodeにマージする。
/// </summary>
public void Merge2Nodes()
{
Color = NodeColor.Black;
Left.Color = NodeColor.Red;
Right.Color = NodeColor.Red;
}
}
}
}
}
namespace YukicoderContest328
{
internal class Program
{
static void Main(string[] args)
{
IProblem question = new ProblemA();
using var io = new IOManager(Console.OpenStandardInput(), Console.OpenStandardOutput());
question.Solve(io);
}
}
}
#region Base Class
namespace YukicoderContest328.Problems
{
public interface IProblem
{
string Solve(string input);
void Solve(IOManager io);
}
public abstract class ProblemBase : IProblem
{
protected bool HasMultiTestCases { get; }
protected ProblemBase(bool hasMultiTestCases) => HasMultiTestCases = hasMultiTestCases;
public string Solve(string input)
{
var inputStream = new MemoryStream(Encoding.UTF8.GetBytes(input));
var outputStream = new MemoryStream();
using var manager = new IOManager(inputStream, outputStream);
Solve(manager);
manager.Flush();
outputStream.Seek(0, SeekOrigin.Begin);
var reader = new StreamReader(outputStream);
return reader.ReadToEnd();
}
public void Solve(IOManager io)
{
var tests = HasMultiTestCases ? io.ReadInt() : 1;
for (var t = 0; t < tests; t++)
{
SolveEach(io);
}
}
protected abstract void SolveEach(IOManager io);
}
}
#endregion
#region Utils
namespace YukicoderContest328
{
public class IOManager : IDisposable
{
private readonly BinaryReader _reader;
private readonly StreamWriter _writer;
private bool _disposedValue;
private byte[] _buffer = new byte[1024];
private int _length;
private int _cursor;
private bool _eof;
const char ValidFirstChar = '!';
const char ValidLastChar = '~';
public IOManager(Stream input, Stream output)
{
_reader = new BinaryReader(input);
_writer = new StreamWriter(output) { AutoFlush = false };
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private char ReadAscii()
{
if (_cursor == _length)
{
_cursor = 0;
_length = _reader.Read(_buffer);
if (_length == 0)
{
if (!_eof)
{
_eof = true;
return char.MinValue;
}
else
{
ThrowEndOfStreamException();
}
}
}
return (char)_buffer[_cursor++];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public char ReadChar()
{
char c;
while (!IsValidChar(c = ReadAscii())) { }
return c;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public string ReadString()
{
var builder = new StringBuilder();
char c;
while (!IsValidChar(c = ReadAscii())) { }
do
{
builder.Append(c);
} while (IsValidChar(c = ReadAscii()));
return builder.ToString();
}
public int ReadInt() => (int)ReadLong();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long ReadLong()
{
long result = 0;
bool isPositive = true;
char c;
while (!IsNumericChar(c = ReadAscii())) { }
if (c == '-')
{
isPositive = false;
c = ReadAscii();
}
do
{
result *= 10;
result += c - '0';
} while (IsNumericChar(c = ReadAscii()));
return isPositive ? result : -result;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private Span<char> ReadChunk(Span<char> span)
{
var i = 0;
char c;
while (!IsValidChar(c = ReadAscii())) { }
do
{
span[i++] = c;
} while (IsValidChar(c = ReadAscii()));
return span.Slice(0, i);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public double ReadDouble() => double.Parse(ReadChunk(stackalloc char[32]));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public decimal ReadDecimal() => decimal.Parse(ReadChunk(stackalloc char[32]));
public int[] ReadIntArray(int n)
{
var a = new int[n];
for (int i = 0; i < a.Length; i++)
{
a[i] = ReadInt();
}
return a;
}
public long[] ReadLongArray(int n)
{
var a = new long[n];
for (int i = 0; i < a.Length; i++)
{
a[i] = ReadLong();
}
return a;
}
public double[] ReadDoubleArray(int n)
{
var a = new double[n];
for (int i = 0; i < a.Length; i++)
{
a[i] = ReadDouble();
}
return a;
}
public decimal[] ReadDecimalArray(int n)
{
var a = new decimal[n];
for (int i = 0; i < a.Length; i++)
{
a[i] = ReadDecimal();
}
return a;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Write<T>(T value) => _writer.Write(value.ToString());
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void WriteLine<T>(T value) => _writer.WriteLine(value.ToString());
public void WriteLine<T>(IEnumerable<T> values, char separator)
{
var e = values.GetEnumerator();
if (e.MoveNext())
{
_writer.Write(e.Current.ToString());
while (e.MoveNext())
{
_writer.Write(separator);
_writer.Write(e.Current.ToString());
}
}
_writer.WriteLine();
}
public void WriteLine<T>(T[] values, char separator) => WriteLine((ReadOnlySpan<T>)values, separator);
public void WriteLine<T>(Span<T> values, char separator) => WriteLine((ReadOnlySpan<T>)values, separator);
public void WriteLine<T>(ReadOnlySpan<T> values, char separator)
{
for (int i = 0; i < values.Length - 1; i++)
{
_writer.Write(values[i]);
_writer.Write(separator);
}
if (values.Length > 0)
{
_writer.Write(values[^1]);
}
_writer.WriteLine();
}
public void Flush() => _writer.Flush();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool IsValidChar(char c) => ValidFirstChar <= c && c <= ValidLastChar;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool IsNumericChar(char c) => ('0' <= c && c <= '9') || c == '-';
private void ThrowEndOfStreamException() => throw new EndOfStreamException();
protected virtual void Dispose(bool disposing)
{
if (!_disposedValue)
{
if (disposing)
{
_reader.Dispose();
_writer.Flush();
_writer.Dispose();
}
_disposedValue = true;
}
}
public void Dispose()
{
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
}
public static class UtilExtensions
{
public static bool ChangeMax<T>(ref this T value, T other) where T : struct, IComparable<T>
{
if (value.CompareTo(other) < 0)
{
value = other;
return true;
}
return false;
}
public static bool ChangeMin<T>(ref this T value, T other) where T : struct, IComparable<T>
{
if (value.CompareTo(other) > 0)
{
value = other;
return true;
}
return false;
}
public static void SwapIfLargerThan<T>(ref this T a, ref T b) where T : struct, IComparable<T>
{
if (a.CompareTo(b) > 0)
{
(a, b) = (b, a);
}
}
public static void SwapIfSmallerThan<T>(ref this T a, ref T b) where T : struct, IComparable<T>
{
if (a.CompareTo(b) < 0)
{
(a, b) = (b, a);
}
}
public static void Sort<T>(this T[] array) where T : IComparable<T> => Array.Sort(array);
public static void Sort<T>(this T[] array, Comparison<T> comparison) => Array.Sort(array, comparison);
}
public static class CollectionExtensions
{
private class ArrayWrapper<T>
{
#pragma warning disable CS0649
public T[] Array;
#pragma warning restore CS0649
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span<T> AsSpan<T>(this List<T> list)
{
return Unsafe.As<ArrayWrapper<T>>(list).Array.AsSpan(0, list.Count);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span<T> GetRowSpan<T>(this T[,] array, int i)
{
var width = array.GetLength(1);
return MemoryMarshal.CreateSpan(ref array[i, 0], width);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span<T> GetRowSpan<T>(this T[,,] array, int i, int j)
{
var width = array.GetLength(2);
return MemoryMarshal.CreateSpan(ref array[i, j, 0], width);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span<T> GetRowSpan<T>(this T[,,,] array, int i, int j, int k)
{
var width = array.GetLength(3);
return MemoryMarshal.CreateSpan(ref array[i, j, k, 0], width);
}
public static void Fill<T>(this T[] array, T value) => array.AsSpan().Fill(value);
public static void Fill<T>(this T[,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(value);
public static void Fill<T>(this T[,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(value);
public static void Fill<T>(this T[,,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(value);
}
public static class SearchExtensions
{
private struct LowerBoundComparer<T> : IComparer<T> where T : IComparable<T>
{
public int Compare(T x, T y) => 0 <= x.CompareTo(y) ? 1 : -1;
}
private struct UpperBoundComparer<T> : IComparer<T> where T : IComparable<T>
{
public int Compare(T x, T y) => 0 < x.CompareTo(y) ? 1 : -1;
}
// https://trsing.hatenablog.com/entry/2019/08/27/211038
public static int GetGreaterEqualIndex<T>(this ReadOnlySpan<T> span, T inclusiveMin) where T : IComparable<T> => ~span.BinarySearch(inclusiveMin, new UpperBoundComparer<T>());
public static int GetGreaterThanIndex<T>(this ReadOnlySpan<T> span, T exclusiveMin) where T : IComparable<T> => ~span.BinarySearch(exclusiveMin, new LowerBoundComparer<T>());
public static int GetLessEqualIndex<T>(this ReadOnlySpan<T> span, T inclusiveMax) where T : IComparable<T> => ~span.BinarySearch(inclusiveMax, new LowerBoundComparer<T>()) - 1;
public static int GetLessThanIndex<T>(this ReadOnlySpan<T> span, T exclusiveMax) where T : IComparable<T> => ~span.BinarySearch(exclusiveMax, new UpperBoundComparer<T>()) - 1;
public static int GetGreaterEqualIndex<T>(this Span<T> span, T inclusiveMin) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetGreaterEqualIndex(inclusiveMin);
public static int GetGreaterThanIndex<T>(this Span<T> span, T exclusiveMin) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetGreaterThanIndex(exclusiveMin);
public static int GetLessEqualIndex<T>(this Span<T> span, T inclusiveMax) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetLessEqualIndex(inclusiveMax);
public static int GetLessThanIndex<T>(this Span<T> span, T exclusiveMax) where T : IComparable<T> => ((ReadOnlySpan<T>)span).GetLessThanIndex(exclusiveMax);
public static int BoundaryBinarySearch(Predicate<int> predicate, int ok, int ng)
{
while (Math.Abs(ok - ng) > 1)
{
var mid = (ok + ng) / 2;
if (predicate(mid))
{
ok = mid;
}
else
{
ng = mid;
}
}
return ok;
}
public static long BoundaryBinarySearch(Predicate<long> predicate, long ok, long ng)
{
while (Math.Abs(ok - ng) > 1)
{
var mid = (ok + ng) / 2;
if (predicate(mid))
{
ok = mid;
}
else
{
ng = mid;
}
}
return ok;
}
public static BigInteger BoundaryBinarySearch(Predicate<BigInteger> predicate, BigInteger ok, BigInteger ng)
{
while (BigInteger.Abs(ok - ng) > 1)
{
var mid = (ok + ng) / 2;
if (predicate(mid))
{
ok = mid;
}
else
{
ng = mid;
}
}
return ok;
}
public static double BoundaryBinarySearch(Predicate<double> predicate, double ok, double ng, double eps = 1e-9, int loopLimit = 1000)
{
var count = 0;
while (Math.Abs(ok - ng) > eps && count++ < loopLimit)
{
var mid = (ok + ng) * 0.5;
if (predicate(mid))
{
ok = mid;
}
else
{
ng = mid;
}
}
return (ok + ng) * 0.5;
}
public static double Bisection(Func<double, double> f, double a, double b, double eps = 1e-9, int loopLimit = 100)
{
double mid = (a + b) / 2;
var fa = f(a);
if (fa * f(b) >= 0)
{
throw new ArgumentException("f(a)とf(b)は異符号である必要があります。");
}
for (int i = 0; i < loopLimit; i++)
{
var fmid = f(mid);
var sign = fa * fmid;
if (sign < 0)
{
b = mid;
}
else if (sign > 0)
{
a = mid;
fa = fmid;
}
else
{
return mid;
}
mid = (a + b) / 2;
if (Math.Abs(b - a) < eps)
{
break;
}
}
return mid;
}
}
}
#endregion
terry_u16