結果
問題 | No.1303 Inconvenient Kingdom |
ユーザー |
![]() |
提出日時 | 2022-01-27 23:03:58 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 79 ms / 3,000 ms |
コード長 | 20,962 bytes |
コンパイル時間 | 2,372 ms |
コンパイル使用メモリ | 151,116 KB |
実行使用メモリ | 32,364 KB |
最終ジャッジ日時 | 2024-12-26 06:02:52 |
合計ジャッジ時間 | 3,947 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 34 |
ソースコード
#line 1 "linear_algebra_matrix/test/matrix_det_dual_number.yuki1303.test.cpp"#define PROBLEM "https://yukicoder.me/problems/no/1303"#line 2 "modint.hpp"#include <iostream>#include <set>#include <vector>// CUT begintemplate <int md> struct ModInt {#if __cplusplus >= 201402L#define MDCONST constexpr#else#define MDCONST#endifusing lint = long long;MDCONST static int mod() { return md; }static int get_primitive_root() {static int primitive_root = 0;if (!primitive_root) {primitive_root = [&]() {std::set<int> fac;int v = md - 1;for (lint i = 2; i * i <= v; i++)while (v % i == 0) fac.insert(i), v /= i;if (v > 1) fac.insert(v);for (int g = 1; g < md; g++) {bool ok = true;for (auto i : fac)if (ModInt(g).pow((md - 1) / i) == 1) {ok = false;break;}if (ok) return g;}return -1;}();}return primitive_root;}int val;MDCONST ModInt() : val(0) {}MDCONST ModInt &_setval(lint v) { return val = (v >= md ? v - md : v), *this; }MDCONST ModInt(lint v) { _setval(v % md + md); }MDCONST explicit operator bool() const { return val != 0; }MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }MDCONST ModInt operator-(const ModInt &x) const {return ModInt()._setval((lint)val - x.val + md);}MDCONST ModInt operator*(const ModInt &x) const {return ModInt()._setval((lint)val * x.val % md);}MDCONST ModInt operator/(const ModInt &x) const {return ModInt()._setval((lint)val * x.inv() % md);}MDCONST ModInt operator-() const { return ModInt()._setval(md - val); }MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }friend MDCONST ModInt operator+(lint a, const ModInt &x) {return ModInt()._setval(a % md + x.val);}friend MDCONST ModInt operator-(lint a, const ModInt &x) {return ModInt()._setval(a % md - x.val + md);}friend MDCONST ModInt operator*(lint a, const ModInt &x) {return ModInt()._setval(a % md * x.val % md);}friend MDCONST ModInt operator/(lint a, const ModInt &x) {return ModInt()._setval(a % md * x.inv() % md);}MDCONST bool operator==(const ModInt &x) const { return val == x.val; }MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }MDCONST bool operator<(const ModInt &x) const {return val < x.val;} // To use std::map<ModInt, T>friend std::istream &operator>>(std::istream &is, ModInt &x) {lint t;return is >> t, x = ModInt(t), is;}MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {return os << x.val;}MDCONST ModInt pow(lint n) const {ModInt ans = 1, tmp = *this;while (n) {if (n & 1) ans *= tmp;tmp *= tmp, n >>= 1;}return ans;}static std::vector<ModInt> facs, facinvs, invs;MDCONST static void _precalculation(int N) {int l0 = facs.size();if (N > md) N = md;if (N <= l0) return;facs.resize(N), facinvs.resize(N), invs.resize(N);for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;facinvs[N - 1] = facs.back().pow(md - 2);for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];}MDCONST lint inv() const {if (this->val < std::min(md >> 1, 1 << 21)) {while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);return invs[this->val].val;} else {return this->pow(md - 2).val;}}MDCONST ModInt fac() const {while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);return facs[this->val];}MDCONST ModInt facinv() const {while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);return facinvs[this->val];}MDCONST ModInt doublefac() const {lint k = (this->val + 1) / 2;return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()): ModInt(k).fac() * ModInt(2).pow(k);}MDCONST ModInt nCr(const ModInt &r) const {return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();}MDCONST ModInt nPr(const ModInt &r) const {return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv();}ModInt sqrt() const {if (val == 0) return 0;if (md == 2) return val;if (pow((md - 1) / 2) != 1) return 0;ModInt b = 1;while (b.pow((md - 1) / 2) == 1) b += 1;int e = 0, m = md - 1;while (m % 2 == 0) m >>= 1, e++;ModInt x = pow((m - 1) / 2), y = (*this) * x * x;x *= (*this);ModInt z = b.pow(m);while (y != 1) {int j = 0;ModInt t = y;while (t != 1) j++, t *= t;z = z.pow(1LL << (e - j - 1));x *= z, z *= z, y *= z;e = j;}return ModInt(std::min(x.val, md - x.val));}};template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};// using mint = ModInt<998244353>;// using mint = ModInt<1000000007>;#line 1 "number/dual_number.hpp"#include <type_traits>namespace dual_number_ {struct has_id_method_impl {template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());template <class T_> static auto check(...) -> std::false_type;};template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};} // namespace dual_number_// Dual number (二重数)// Verified: https://atcoder.jp/contests/abc235/tasks/abc235_ftemplate <class T> struct DualNumber {T a, b; // a + bxtemplate <typename T2, typename std::enable_if<dual_number_::has_id<T2>::value>::type * = nullptr>static T2 _T_id() {return T2::id();}template <typename T2, typename std::enable_if<!dual_number_::has_id<T2>::value>::type * = nullptr>static T2 _T_id() {return T2(1);}DualNumber(T x = T(), T y = T()) : a(x), b(y) {}static DualNumber id() { return DualNumber(_T_id<T>(), T()); }explicit operator bool() const { return a != T() or b != T(); }DualNumber operator+(const DualNumber &x) const { return DualNumber(a + x.a, b + x.b); }DualNumber operator-(const DualNumber &x) const { return DualNumber(a - x.a, b - x.b); }DualNumber operator*(const DualNumber &x) const {return DualNumber(a * x.a, b * x.a + a * x.b);}DualNumber operator/(const DualNumber &x) const {T cinv = _T_id<T>() / x.a;return DualNumber(a * cinv, (b * x.a - a * x.b) * cinv * cinv);}DualNumber operator-() const { return DualNumber(-a, -b); }DualNumber &operator+=(const DualNumber &x) { return *this = *this + x; }DualNumber &operator-=(const DualNumber &x) { return *this = *this - x; }DualNumber &operator*=(const DualNumber &x) { return *this = *this * x; }DualNumber &operator/=(const DualNumber &x) { return *this = *this / x; }bool operator==(const DualNumber &x) const { return a == x.a and b == x.b; }bool operator!=(const DualNumber &x) const { return !(*this == x); }bool operator<(const DualNumber &x) const { return (a != x.a ? a < x.a : b < x.b); }template <class OStream> friend OStream &operator<<(OStream &os, const DualNumber &x) {return os << '{' << x.a << ',' << x.b << '}';}};#line 2 "unionfind/unionfind.hpp"#include <numeric>#include <utility>#line 5 "unionfind/unionfind.hpp"// CUT begin// UnionFind Tree (0-indexed), based on size of each disjoint setstruct UnionFind {std::vector<int> par, cou;UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); }int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }bool unite(int x, int y) {x = find(x), y = find(y);if (x == y) return false;if (cou[x] < cou[y]) std::swap(x, y);par[y] = x, cou[x] += cou[y];return true;}int count(int x) { return cou[find(x)]; }bool same(int x, int y) { return find(x) == find(y); }};#line 2 "linear_algebra_matrix/matrix.hpp"#include <algorithm>#include <cassert>#include <cmath>#include <iterator>#line 9 "linear_algebra_matrix/matrix.hpp"namespace matrix_ {struct has_id_method_impl {template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());template <class T_> static auto check(...) -> std::false_type;};template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};} // namespace matrix_template <typename T> struct matrix {int H, W;std::vector<T> elem;typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }inline T &at(int i, int j) { return elem[i * W + j]; }inline T get(int i, int j) const { return elem[i * W + j]; }int height() const { return H; }int width() const { return W; }std::vector<std::vector<T>> vecvec() const {std::vector<std::vector<T>> ret(H);for (int i = 0; i < H; i++) {std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));}return ret;}operator std::vector<std::vector<T>>() const { return vecvec(); }matrix() = default;matrix(int H, int W) : H(H), W(W), elem(H * W) {}matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));}template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr>static T2 _T_id() {return T2::id();}template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr>static T2 _T_id() {return T2(1);}static matrix Identity(int N) {matrix ret(N, N);for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>();return ret;}matrix operator-() const {matrix ret(H, W);for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i];return ret;}matrix operator*(const T &v) const {matrix ret = *this;for (auto &x : ret.elem) x *= v;return ret;}matrix operator/(const T &v) const {matrix ret = *this;const T vinv = _T_id<T>() / v;for (auto &x : ret.elem) x *= vinv;return ret;}matrix operator+(const matrix &r) const {matrix ret = *this;for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i];return ret;}matrix operator-(const matrix &r) const {matrix ret = *this;for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i];return ret;}matrix operator*(const matrix &r) const {matrix ret(H, r.W);for (int i = 0; i < H; i++) {for (int k = 0; k < W; k++) {for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j);}}return ret;}matrix &operator*=(const T &v) { return *this = *this * v; }matrix &operator/=(const T &v) { return *this = *this / v; }matrix &operator+=(const matrix &r) { return *this = *this + r; }matrix &operator-=(const matrix &r) { return *this = *this - r; }matrix &operator*=(const matrix &r) { return *this = *this * r; }bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }bool operator<(const matrix &r) const { return elem < r.elem; }matrix pow(int64_t n) const {matrix ret = Identity(H);bool ret_is_id = true;if (n == 0) return ret;for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {if (!ret_is_id) ret *= ret;if ((n >> i) & 1) ret *= (*this), ret_is_id = false;}return ret;}std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const {matrix x = *this;while (n) {if (n & 1) vec = x * vec;x *= x;n >>= 1;}return vec;};matrix transpose() const {matrix ret(W, H);for (int i = 0; i < H; i++) {for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);}return ret;}// Gauss-Jordan elimination// - Require inverse for every non-zero element// - Complexity: O(H^2 W)template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {int piv = -1;for (int j = h; j < mtr.H; j++) {if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c))))piv = j;}return piv;}template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {for (int j = h; j < mtr.H; j++) {if (mtr.get(j, c) != T2()) return j;}return -1;}matrix gauss_jordan() const {int c = 0;matrix mtr(*this);std::vector<int> ws;ws.reserve(W);for (int h = 0; h < H; h++) {if (c == W) break;int piv = choose_pivot(mtr, h, c);if (piv == -1) {c++;h--;continue;}if (h != piv) {for (int w = 0; w < W; w++) {std::swap(mtr[piv][w], mtr[h][w]);mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant}}ws.clear();for (int w = c; w < W; w++) {if (mtr.at(h, w) != T()) ws.emplace_back(w);}const T hcinv = _T_id<T>() / mtr.at(h, c);for (int hh = 0; hh < H; hh++)if (hh != h) {const T coeff = mtr.at(hh, c) * hcinv;for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff;mtr.at(hh, c) = T();}c++;}return mtr;}int rank_of_gauss_jordan() const {for (int i = H * W - 1; i >= 0; i--) {if (elem[i] != 0) return i / W + 1;}return 0;}T determinant_of_upper_triangle() const {T ret = _T_id<T>();for (int i = 0; i < H; i++) ret *= get(i, i);return ret;}int inverse() {assert(H == W);std::vector<std::vector<T>> ret = Identity(H), tmp = *this;int rank = 0;for (int i = 0; i < H; i++) {int ti = i;while (ti < H and tmp[ti][i] == 0) ti++;if (ti == H) {continue;} else {rank++;}ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]);T inv = _T_id<T>() / tmp[i][i];for (int j = 0; j < W; j++) ret[i][j] *= inv;for (int j = i + 1; j < W; j++) tmp[i][j] *= inv;for (int h = 0; h < H; h++) {if (i == h) continue;const T c = -tmp[h][i];for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c;for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c;}}*this = ret;return rank;}friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {assert(m.W == int(v.size()));std::vector<T> ret(m.H);for (int i = 0; i < m.H; i++) {for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j];}return ret;}friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {assert(int(v.size()) == m.H);std::vector<T> ret(m.W);for (int i = 0; i < m.H; i++) {for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j);}return ret;}std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; }std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); }template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) {os << "[(" << x.H << " * " << x.W << " matrix)";os << "\n[column sums: ";for (int j = 0; j < x.W; j++) {T s = 0;for (int i = 0; i < x.H; i++) s += x.get(i, j);os << s << ",";}os << "]";for (int i = 0; i < x.H; i++) {os << "\n[";for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";os << "]";}os << "]\n";return os;}template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) {for (auto &v : x.elem) is >> v;return is;}};#line 6 "linear_algebra_matrix/test/matrix_det_dual_number.yuki1303.test.cpp"#line 10 "linear_algebra_matrix/test/matrix_det_dual_number.yuki1303.test.cpp"using namespace std;using mint = ModInt<998244353>;using dual = DualNumber<mint>;mint solve1(int N, const vector<pair<int, int>> &edges) {vector<vector<dual>> d(N, vector<dual>(N));for (auto p : edges) {int u = p.first, v = p.second;d[u][u] += dual::id();d[v][v] += dual::id();d[u][v] -= dual::id();d[v][u] -= dual::id();}const dual x = dual(0, 1);for (int i = 0; i < N; ++i) {for (int j = 0; j < i; ++j) {if (d[i][j] == dual()) {d[i][i] += x;d[j][j] += x;d[i][j] -= x;d[j][i] -= x;}}}d.resize(N - 1);for (auto &v : d) v.resize(N - 1);auto ret = matrix<dual>(d).gauss_jordan().determinant_of_upper_triangle();return ret.a + ret.b;}mint solve2(const vector<int> &vs, const vector<pair<int, int>> &edges) {int D = vs.size();matrix<mint> mat(D - 1, D - 1);for (auto p : edges) {int i = lower_bound(vs.begin(), vs.end(), p.first) - vs.begin();int j = lower_bound(vs.begin(), vs.end(), p.second) - vs.begin();if (i < D - 1) mat[i][i] += 1;if (j < D - 1) mat[j][j] += 1;if (i + 1 < D and j + 1 < D) mat[i][j] -= 1, mat[j][i] -= 1;}return mat.gauss_jordan().determinant_of_upper_triangle();}int main() {cin.tie(nullptr), ios::sync_with_stdio(false);int N, M;cin >> N >> M;vector<pair<int, int>> edges;UnionFind uf1(N);while (M--) {int u, v;cin >> u >> v;--u, --v;edges.emplace_back(u, v);uf1.unite(u, v);}if (uf1.count(0) == N) {cout << "0\n" << solve1(N, edges) << '\n';return 0;}int max_red = 0, cntmaxi = 0, fuben = 0;for (int i = 0; i < N; ++i) {for (int j = 0; j < N; ++j) fuben += !uf1.same(i, j);}for (int i = 0; i < N; ++i) {for (int j = 0; j < i; ++j) {if (!uf1.same(i, j)) {int s = uf1.count(i) * uf1.count(j);if (s > max_red) {max_red = s, cntmaxi = 1;} else {if (max_red == s) cntmaxi++;}}}}mint ret = cntmaxi;vector<vector<int>> r2is(N);vector<vector<pair<int, int>>> r2edges(N);for (int i = 0; i < N; ++i) r2is[uf1.find(i)].push_back(i);for (auto p : edges) r2edges[uf1.find(p.first)].push_back(p);for (int r = 0; r < N; ++r) {if (r2is[r].size()) ret *= solve2(r2is[r], r2edges[r]);}cout << fuben - max_red * 2 << '\n' << ret << '\n';}