結果
| 問題 |
No.117 組み合わせの数
|
| コンテスト | |
| ユーザー |
89
|
| 提出日時 | 2022-02-06 03:26:50 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 614 ms / 5,000 ms |
| コード長 | 3,505 bytes |
| コンパイル時間 | 356 ms |
| コンパイル使用メモリ | 82,560 KB |
| 実行使用メモリ | 243,200 KB |
| 最終ジャッジ日時 | 2024-06-11 13:43:11 |
| 合計ジャッジ時間 | 1,939 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 |
ソースコード
T = int(input())
class Combination:
def __init__(self, n_max, mod=10**9+7):
# O(n_max + log(mod))
self.mod = mod
f = 1
self.fac = fac = [f]
for i in range(1, n_max+1):
f = f * i % mod
fac.append(f)
f = pow(f, mod-2, mod)
self.facinv = facinv = [f]
for i in range(n_max, 0, -1):
f = f * i % mod
facinv.append(f)
facinv.reverse()
# "n 要素を" は区別できる n 要素
# "k グループ" はちょうど k グループ
def __call__(self, n, r): # self.C と同じ
return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod
def C(self, n, r):
if not 0 <= r <= n: return 0
return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod
def P(self, n, r):
if not 0 <= r <= n: return 0
return self.fac[n] * self.facinv[n-r] % self.mod
def H(self, n, r):
if (n == 0 and r > 0) or r < 0: return 0
return self.fac[n+r-1] * self.facinv[r] % self.mod * self.facinv[n-1] % self.mod
def rising_factorial(self, n, r): # 上昇階乗冪 n * (n+1) * ... * (n+r-1)
return self.fac[n+r-1] * self.facinv[n-1] % self.mod
def stirling_first(self, n, k): # 第 1 種スターリング数 lru_cache を使うと O(nk) # n 要素を k 個の巡回列に分割する場合の数
if n == k: return 1
if k == 0: return 0
return (self.stirling_first(n-1, k-1) + (n-1)*self.stirling_first(n-1, k)) % self.mod
def stirling_second(self, n, k): # 第 2 種スターリング数 O(k + log(n)) # n 要素を区別のない k グループに分割する場合の数
if n == k: return 1 # n==k==0 のときのため
return self.facinv[k] * sum((-1)**(k-m) * self.C(k, m) * pow(m, n, self.mod) for m in range(1, k+1)) % self.mod
def balls_and_boxes_3(self, n, k): # n 要素を区別のある k グループに分割する場合の数 O(k + log(n))
return sum((-1)**(k-m) * self.C(k, m) * pow(m, n, self.mod) for m in range(1, k+1)) % self.mod
def bernoulli(self, n): # ベルヌーイ数 lru_cache を使うと O(n**2 * log(mod))
if n == 0: return 1
if n % 2 and n >= 3: return 0 # 高速化
return (- pow(n+1, self.mod-2, self.mod) * sum(self.C(n+1, k) * self.bernoulli(k) % self.mod for k in range(n))) % self.mod
def faulhaber(self, k, n): # べき乗和 0^k + 1^k + ... + (n-1)^k
# bernoulli に lru_cache を使うと O(k**2 * log(mod)) bernoulli が計算済みなら O(k * log(mod))
return pow(k+1, self.mod-2, self.mod) * sum(self.C(k+1, j) * self.bernoulli(j) % self.mod * pow(n, k-j+1, self.mod) % self.mod for j in range(k+1)) % self.mod
def lah(self, n, k): # n 要素を k 個の空でない順序付き集合に分割する場合の数 O(1)
return self.C(n-1, k-1) * self.fac[n] % self.mod * self.facinv[k] % self.mod
def bell(self, n, k): # n 要素を k グループ以下に分割する場合の数 O(k**2 + k*log(mod))
return sum(self.stirling_second(n, j) for j in range(1, k+1)) % self.mod
mod = 10**9+7
comb = Combination(2000000)
for i in range(T):
a = input()
n,m = map(int,a[2:len(a)-1].split(","))
if a[0] == "C":
print(comb.C(n,m))
if a[0] == "H":
print(comb.H(n,m))
if a[0] == "P":
print(comb.P(n,m))
89