結果
| 問題 | 
                            No.1839 Concatenation Matrix
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2022-02-11 23:19:10 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 2,605 ms / 3,500 ms | 
| コード長 | 3,000 bytes | 
| コンパイル時間 | 247 ms | 
| コンパイル使用メモリ | 82,688 KB | 
| 実行使用メモリ | 334,628 KB | 
| 最終ジャッジ日時 | 2024-06-27 21:41:42 | 
| 合計ジャッジ時間 | 21,227 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 16 | 
ソースコード
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0
def _ntt(f,L,reverse=False):
    F=[f[i] for i in range(L)]
    n = L.bit_length() - 1
    base = omega
    if reverse:
        base = rev_omega
    if not n:
        return F
    size = 2**n
    wj = pow(base,2**22,mod)
    res = [0]*2**n
    for i in range(n,0,-1):
        use_omega = pow(base,2**(22+i-n),mod)
        res = [0]*2**n
        size //= 2
        w = 1
        for j in range(0,L//2,size):
            for a in range(size):
                res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod
                t = (w * wj) % mod
                res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod
            w = (w * use_omega) % mod
        F = res
    return res
def ntt(f,L=0):
    l = len(f)
    if not L:
        L = 1<<((l-1).bit_length())
    while len(f)<L:
        f.append(0)
    f=f[:L]
    F = _ntt(f,L)
    return F
def intt(f,L=0):
    l = len(f)
    if not L:
        L = 1<<((l-1).bit_length())
    while len(f)<L:
        f.append(0)
    f=f[:L]
    F = _ntt(f,L,reverse=True)
    inv = pow(L,mod-2,mod)
    for i in range(L):
        F[i] *= inv
        F[i] %= mod
    return F
def convolve(f,g,limit):
    l = len(f)+len(g)-1
    L = 1<<((l-1).bit_length())
    F = ntt(f,L)
    G = ntt(g,L)
    H = [(F[i] * G[i]) % mod for i in range(L)]
    h = intt(H,L)
    return h[:limit]
class SegmentTree:
    def __init__(self, init_val, segfunc, ide_ele):
        n = len(init_val)
        self.segfunc = segfunc
        self.ide_ele = ide_ele
        self.num = 1 << (n - 1).bit_length()
        self.tree = [ide_ele] * 2 * self.num
        self.size = n
        for i in range(n):
            self.tree[self.num + i] = init_val[i]
        for i in range(self.num - 1, 0, -1):
            self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1])
import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import log,gcd
input = lambda :sys.stdin.readline()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def merge(f,g):
    return convolve(f,g,len(f)+len(g))
N = int(input())
A = li()
i10 = inv[10]
init = []
tmp = i10
for i in range(N-1):
    init.append([1,tmp])
    tmp = tmp * tmp % mod
seg = SegmentTree(init,merge,[1])
last = seg.tree[1]
t = 10
for i in range(N-1):
    t = t * t % mod
for i in range(N):
    last[i] = (last[i] * (t*i10 % mod)) % mod
last = [last[0]]  + [last[i] for i in range(1,N)[::-1]]
final = convolve(A,last,3*N)
for i in range(N,len(final)):
    final[i%N] += final[i]
    final[i%N] %= mod
print(*final[:N],sep="\n")