結果
| 問題 |
No.776 A Simple RMQ Problem
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2022-03-01 13:21:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 314 ms / 3,000 ms |
| コード長 | 7,187 bytes |
| コンパイル時間 | 2,694 ms |
| コンパイル使用メモリ | 203,692 KB |
| 最終ジャッジ日時 | 2025-01-28 04:04:49 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 26 |
ソースコード
// #include <atcoder/all>
// using namespace atcoder;
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define all(x) (x).begin(), (x).end()
#define popcnt(x) __builtin_popcount(x)
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using vi = vector<int>;
using vll = vector<ll>;
using vvi = vector<vector<int>>;
using vvll = vector<vector<ll>>;
const int lim = 1e9;
const ll inf = 1e18;
int dx[] = {1, 1, 0, -1, -1, -1, 0, 1};
int dy[] = {0, 1, 1, 1, 0, -1, -1, -1};
// const int mod = 1000000007;
const int mod = 998244353;
struct mint {
ll x; // typedef long long ll;
mint(ll x = 0) : x((x % mod + mod) % mod) {}
mint operator-() const { return mint(-x); }
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const { return mint(*this) += a; }
mint operator-(const mint a) const { return mint(*this) -= a; }
mint operator*(const mint a) const { return mint(*this) *= a; }
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t >> 1);
a *= a;
if (t & 1) a *= *this;
return a;
}
// for prime mod
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint a) { return *this *= a.inv(); }
mint operator/(const mint a) const { return mint(*this) /= a; }
};
istream& operator>>(istream& is, mint& a) { return is >> a.x; }
ostream& operator<<(ostream& os, const mint& a) { return os << a.x; }
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {}
explicit lazy_segtree(const vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
struct S {
ll mn;
ll mx;
ll val;
};
using F = long long;
S op(S l, S r) {
ll mn = min(l.mn, r.mn);
ll mx = max(l.mx, r.mx);
ll v = max(max(l.val, r.val), r.mx - l.mn);
return S{mn, mx, v};
}
S e() { return S{inf, -inf, -inf}; }
S mapping(F l, S r) { return S{r.mn + l, r.mx + l, r.val}; }
F composition(ll l, ll r) { return l + r; }
F id() { return 0LL; }
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, q;
cin >> n >> q;
vll a(n);
rep(i, n) cin >> a[i];
lazy_segtree<S, op, e, F, mapping, composition, id> st(n + 1);
ll s = 0LL;
st.set(0, S{s, s, -inf});
rep(i, n) {
s += a[i];
st.set(i + 1, S{s, s, -inf});
}
rep(qi, q) {
string t;
cin >> t;
if (t == "set") {
int i;
ll x;
cin >> i >> x;
i--;
st.apply(i + 1, n + 1, x - a[i]);
a[i] = x;
} else {
int l1, l2, r1, r2;
cin >> l1 >> l2 >> r1 >> r2;
l1--;
r2++;
ll s1 = inf, s2 = inf, t2 = -inf, t3 = -inf, ans = -inf;
if (l1 < r1) s1 = st.prod(l1, min(l2, r1)).mn;
if (l2 < r2) t3 = st.prod(max(l2, r1), r2).mx;
int L = max(l1, r1), R = min(l2, r2);
if (L < R) {
auto ret = st.prod(L, R);
s2 = ret.mn;
t2 = ret.mx;
ans = max(ans, ret.val);
}
// cout<<s1<<" "<<s2<<" "<<t2<<" "<<t3<<" "<<ans<<endl;
ans = max(ans, max(t2, t3) - s1);
ans = max(ans, t3 - min(s1, s2));
cout << ans << endl;
}
}
return 0;
}
mkawa2