結果

問題 No.899 γatheree
ユーザー ああいいああいい
提出日時 2022-03-04 18:09:48
言語 PyPy3
(7.3.15)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 4,951 bytes
コンパイル時間 316 ms
コンパイル使用メモリ 86,780 KB
実行使用メモリ 110,212 KB
最終ジャッジ日時 2023-09-25 19:14:54
合計ジャッジ時間 40,159 ms
ジャッジサーバーID
(参考情報)
judge14 / judge15
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 92 ms
72,392 KB
testcase_01 AC 123 ms
77,252 KB
testcase_02 AC 133 ms
77,444 KB
testcase_03 AC 126 ms
77,124 KB
testcase_04 AC 124 ms
77,268 KB
testcase_05 AC 128 ms
77,288 KB
testcase_06 AC 1,907 ms
106,708 KB
testcase_07 AC 1,989 ms
109,444 KB
testcase_08 AC 1,936 ms
110,212 KB
testcase_09 AC 1,948 ms
108,296 KB
testcase_10 AC 1,987 ms
105,804 KB
testcase_11 AC 1,950 ms
107,588 KB
testcase_12 TLE -
testcase_13 AC 1,942 ms
107,880 KB
testcase_14 AC 1,860 ms
106,672 KB
testcase_15 AC 1,964 ms
109,000 KB
testcase_16 AC 1,908 ms
106,544 KB
testcase_17 AC 1,850 ms
106,640 KB
testcase_18 AC 1,918 ms
107,096 KB
testcase_19 TLE -
testcase_20 AC 1,970 ms
108,292 KB
testcase_21 AC 1,795 ms
108,372 KB
testcase_22 AC 1,793 ms
108,264 KB
testcase_23 AC 1,866 ms
108,852 KB
権限があれば一括ダウンロードができます

ソースコード

diff #


#頂点は1-index,下段は0-index
class LazySegTree:

    #単位元と結合と作用をここで定義
    Xunit = 0
    Aunit = -1

    
    def Xf(self,x,y):
        return x + y
    
    #Xf = max
    def Af(self,a,b):
        if b == self.Aunit:
            return a
        return b
    #AのXへの作用
    def operate(self,x,a):
        if a == self.Aunit:
            return x
        return a

    def __init__(self,N):
        self.N = N
        self.X = [self.Xunit] * (N + N)
        self.A = [self.Aunit] * (N + N)
    def build(self,seq):
        for i,x in enumerate(seq,self.N):
            self.X[i] = x
        for i in range(self.N-1,0,-1):
            self.X[i] = self.Xf(self.X[i<<1],self.X[i<<1 | 1])
    def eval_at(self,i):
        return self.operate(self.X[i],self.A[i])
    def propagate_at(self,i):
        self.X[i] = self.eval_at(i)
        self.A[i<<1] = self.Af(self.A[i<<1],self.A[i])
        self.A[i<<1 | 1] = self.Af(self.A[i<<1 | 1],self.A[i])
        self.A[i] = self.Aunit
    def propagate_above(self,i):
        H = i.bit_length() - 1
        for h in range(H,0,-1):
            self.propagate_at(i >> h)
    def recalc_above(self,i):
        while i > 1:
            i >>= 1
            self.X[i] = self.Xf(self.eval_at(i << 1),self.eval_at(i << 1 | 1))
    def update(self,i,x):
        i += self.N
        self.propagate_above(i)
        self.X[i] = x
        self.A[i] = self.Aunit
        self.recalc_above(i)
    def fold(self,L = 0,R = -1):
        if R == -1:R = self.N
        L += self.N
        R += self.N
        self.propagate_above(L // (L & -L))
        self.propagate_above(R // (R & -R) -1)
        vL = self.Xunit
        vR = self.Xunit
        while L < R:
            if L & 1:
                vL = self.Xf(vL,self.eval_at(L))
                L += 1
            if R & 1:
                R -= 1
                vR = self.Xf(self.eval_at(R),vR)
            L >>= 1
            R >>= 1
        return self.Xf(vL,vR)
    def operate_range(self,L,R,x):
        #区間全体に作用させる
        L += self.N
        R += self.N
        L0 = L // (L & -L)
        R0 = R // (R & -R) - 1
        self.propagate_above(L0)
        self.propagate_above(R0)
        while L < R:
            if L & 1:
                self.A[L] = self.Af(self.A[L],x)
                L += 1
            if R & 1:
                R -= 1
                self.A[R] = self.Af(self.A[R],x)
            L >>= 1
            R >>= 1
        self.recalc_above(L0)
        self.recalc_above(R0)
    def write(self):
        print(self.X)
    def change(self,Xf,Xunit,Af,Aunit,operate):
        self.Xf = Xf
        self.Xunit = Xunit
        self.Af = Af
        self.Aunit = Aunit
        self.operate = operate


N = int(input())
G = [[] for _ in range(N)]
for _ in range(N-1):
    u,v = map(int,input().split())
    G[u].append(v)
    G[v].append(u)
A = list(map(int,input().split()))
from collections import deque
parent = [-1] * N
pos = [-1] * N
q = deque()

q.append((0,-1))
l1 = [-1] * N
r1 = [-2] * N
l2 = [-1] * N
r2 = [-2] * N
count = 0
while q:
    now,p = q.popleft()
    if now >= 0:
        pos[now] = count
        count += 1
        for v in G[now]:
            if v == p:continue
            parent[v] = now
            q.append((v,now))
q.append((0,-1))
while q:
    now,p = q.popleft()
    for v in G[now]:
        if v == p:continue
        q.append((v,now))
    if True:
        for v in G[now]:
            if v == p:continue
            l1[now] = pos[v]
            break
        
        for v in reversed(G[now]):
            if v == p:continue
            r1[now] = pos[v]
            break
        for v in G[now]:
            if v == p:continue
            if l2[now] >= 0:break
            for u in G[v]:
                if u == now:continue
                l2[now] = pos[u]
                break
        for v in reversed(G[now]):
            if v == p:continue
            if r2[now] >= 0:break
            for u in reversed(G[v]):
                if u == now:continue
                r2[now] = pos[u]
                break

seg = LazySegTree(N)
seq = [0] * N
for i in range(N):
    seq[pos[i]] = A[i]
seg.build(seq)
Q = int(input())
for _ in range(Q):
    x = int(input())
    ans = 0
    p = parent[x]
    if p >= 0:
        ans += seg.fold(pos[p],pos[p]+1)
        seg.operate_range(pos[p],pos[p]+1,0)
        ans += seg.fold(l1[p],r1[p]+1)
        seg.operate_range(l1[p],r1[p]+1,0)
        if parent[p] >= 0:
            pp = parent[p]
            ans += seg.fold(pos[pp],pos[pp]+1)
            seg.operate_range(pos[pp],pos[pp]+1,0)
    else:
        ans += seg.fold(pos[x],pos[x] +1)
        seg.operate_range(pos[x],pos[x]+1,0)
    if l1[x] >= 0:
        ans += seg.fold(l1[x],r1[x] + 1)
        seg.operate_range(l1[x],r1[x]+1,0)
    if l2[x] >= 0:
        ans += seg.fold(l2[x],r2[x]+1)
        seg.operate_range(l2[x],r2[x]+1,0)
    print(ans)
    seg.update(pos[x],ans)

0