結果
問題 | No.1860 Magnets |
ユーザー | Ebishu |
提出日時 | 2022-03-04 21:26:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 17,925 bytes |
コンパイル時間 | 3,480 ms |
コンパイル使用メモリ | 212,696 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-18 19:15:03 |
合計ジャッジ時間 | 4,319 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 1 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 1 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
コンパイルメッセージ
main.cpp: In member function 'int BitVector::select(int) const': main.cpp:769:9: warning: no return statement in function returning non-void [-Wreturn-type] 769 | } | ^
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <climits> #include <cmath> #include <complex> #include <cstring> #include <deque> #include <functional> #include <iostream> #include <map> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <vector> using namespace std; using lint = long long; using P = pair<lint, lint>; using Pii = pair<int, int>; #define rep(i, n) for (lint i = 0; i < (lint)(n); ++i) #define repe(i, n) for(lint i = 0; i <= (lint)(n); ++i) #define rep1(i, n) for (lint i = 1; i < (lint)(n); ++i) #define rep1e(i, n) for (lint i = 1; i <= (lint)(n); ++i) #define repn(i, a, b) for (lint i = (a); i < (lint)(b); ++i) #define repne(i, a, b) for (lint i = (a); i <= (lint)(b); ++i) #define rrep(i, n) for (lint i = (n); i >= 0; --i) #define all(vec) begin(vec), end(vec) #define rall(vec) rbegin(vec), rend(vec) constexpr long long Mod = /** 1000'000'007LL /*/ 998244353LL /**/; constexpr long long Inf = 1'000'000'000'000'000'010LL; constexpr int IntInf = 1000'000'010; constexpr double Pi = 3.141592653589793238; constexpr double InvPi = 0.318309886183790671; const int di[4] = { 0,1,0,-1 }, dj[4] = { 1,0,-1,0 }; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; using mint = static_modint<Mod>; inline istream& operator>>(istream& is, mint& rhs) { long long tmp; is >> tmp; rhs = tmp; return is; } inline ostream& operator<<(ostream& os, const mint& rhs) { return os << rhs.val(); } mint lagrange_interpolation(const vector<mint>& y, mint t) { const int n = (int)y.size(); mint res = 0; vector<mint> inv(n), fact_inv(n); inv[1] = 1; fact_inv[0] = 1; fact_inv[1] = 1; for (int i = 2; i < n; ++i) { inv[i] = -Mod / i * inv[Mod % i]; fact_inv[i] = fact_inv[i - 1] * inv[i]; } vector<mint> prod2(n); prod2.back() = 1; for (int i = n - 1; i > 0; --i) { prod2[i - 1] = (t - i) * prod2[i]; } mint prod1 = 1; for (int i = 0; i < n; ++i) { mint a = y[i]; a *= fact_inv[i] * fact_inv[n - 1 - i]; if ((n - 1 - i) & 1) a = -a; res += a * prod1 * prod2[i]; prod1 *= (t - i); } return res; } template<typename T> lint inversion_number(const vector<T> vec) { vector<T> v = vec; sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); const int n = vec.size(); lint res = 0; fenwick_tree<int> b(n); for (int i = 0; i < n; ++i) { const int j = lower_bound(v.begin(), v.end(), vec[i]) - v.begin(); res += i - b.sum(0, j); b.add(j, 1); } return res; } // Π(a_i x + b_i) vector<mint> prod(const vector<mint>& a, const vector<mint>& b) { const size_t n = a.size(); size_t n1 = 1; while (n1 < n) n1 <<= 1; vector<vector<mint>> fs(2 * n1, { 1 }); for (size_t i = n1; i < n + n1; ++i) { fs[i].resize(2); fs[i][0] = b[i - n1]; fs[i][1] = a[i - n1]; } for (size_t i = n1 - 1; i >= 1; --i) { fs[i] = convolution(fs[i << 1], fs[i << 1 | 1]); } return fs[1]; } #endif template<typename T> using prique = priority_queue<T>; template<typename T> using prique_inv = priority_queue<T, vector<T>, greater<T>>; template<typename T> inline istream& operator>>(istream& is, vector<T>& v) { for (auto&& e : v) is >> e; return is; } template<typename T> inline istream& operator>>(istream& is, complex<T>& c) { double real, imag; is >> real >> imag; c.real(real); c.imag(imag); return is; } template<typename T> inline ostream& operator<<(ostream& os, const vector<T>& v) { for (auto itr = v.begin(), end_itr = v.end(); itr != end_itr;) { os << *itr; if (++itr != end_itr) os << " "; } return os; } template<typename T, typename U> inline bool chmin(T& a, const U b) { return a > b ? a = b, true : false; } template<typename T, typename U> inline bool chmax(T& a, const U b) { return a < b ? a = b, true : false; } template<typename T, typename U> inline istream& operator>>(istream& is, pair<T, U>& rhs) { return is >> rhs.first >> rhs.second; } template<typename T, typename U> inline ostream& operator<<(ostream& os, const pair<T, U>& rhs) { return os << "{" << rhs.first << ", " << rhs.second << "}"; } template<typename T, typename U, class Pr> inline int getid(const vector<T>& v, const U& value, Pr pred) { return lower_bound(v.begin(), v.end(), value, pred) - v.begin(); } template<typename T, typename U> inline int getid(const vector<T>& v, const U& value) { return getid(v, value, less<>{}); } template<typename T> T gcd(const vector<T>& vec) { T res = vec.front(); for (T e : vec) { res = gcd(res, e); if (res == 1) return 1; } return res; } template<typename T> T gcd(initializer_list<T> init) { auto first = init.begin(), last = init.end(); T res = *(first++); for (auto itr = first; itr != last; ++itr) { res = gcd(res, *itr); if (res == 1) return 1; } return res; } template<typename T> T lcm(const vector<T>& vec) { T res = vec.front(); for (T e : vec) res = lcm(res, e); return res; } template<typename T> T lcm(initializer_list<T> init) { auto first = init.begin(), last = init.end(); T res = *(first++); for (auto itr = first; itr != last; ++itr) { res = lcm(res, *itr); } return res; } template<typename T> T pow(T x, lint n) { T res = 1; while (n > 0) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } inline void YESNO(bool b) { cout << (b ? "YES" : "NO") << "\n"; } inline void YesNo(bool b) { cout << (b ? "Yes" : "No") << "\n"; } inline void yesno(bool b) { cout << (b ? "yes" : "no") << "\n"; } constexpr int bitpopcount(lint x) { x = (x & 0x5555555555555555) + ((x >> 1) & 0x5555555555555555); x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f0f0f0f0f); x = (x & 0x00ff00ff00ff00ff) + ((x >> 8) & 0x00ff00ff00ff00ff); x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff); x = (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff); return x; } template<typename T> T rand(T l, T r) { static mt19937 mt(random_device{}()); if constexpr (is_integral_v<T>) { static uniform_int_distribution<T> dist(l, r); return dist(mt); } else if constexpr (is_floating_point_v<T>) { static uniform_real_distribution<T> dist(l, r); return dist(mt); } } bool is_prime(lint x) { for (lint i = 2; i * i <= x; ++i) { if (x % i == 0) return false; } return 1 < x; } vector<lint> divisors(lint n) { vector<lint> res; for (lint x = 1; x * x <= n; ++x) { if (n % x == 0) { res.push_back(x); if (x * x != n) res.push_back(n / x); } } return res; } lint phi(lint n) { lint r = n; for (lint i = 2; i * i <= n; ++i) { if (n % i == 0) { r -= r / i; while (n % i == 0) n /= i; } } if (n > 1) r -= r / n; return r; } lint floor_sqrt(lint n) { lint l = 0, r = 3000'000'000LL; while (r - l > 1) { lint mid = (l + r) / 2; (mid * mid <= n ? l : r) = mid; } return l; } lint ceil_sqrt(lint n) { lint l = 0, r = 3000'000'000LL; while (r - l > 1) { lint mid = (l + r) / 2; (mid * mid < n ? l : r) = mid; } return r; } template<typename T> constexpr bool is_intersect(T l1, T r1, T l2, T r2) { return l1 <= r2 && l2 <= r1; } lint fact[15'000'020], fact_inv[15'000'020], inv[15'000'020]; void fact_init(lint n) { fact[0] = fact[1] = 1; fact_inv[0] = fact_inv[1] = 1; inv[1] = 1; for (lint i = 2; i <= n; ++i) { fact[i] = i * fact[i - 1] % Mod; inv[i] = Mod - Mod / i * inv[Mod % i] % Mod; fact_inv[i] = fact_inv[i - 1] * inv[i] % Mod; } } lint modinv(lint a, lint m = Mod) { lint b = m, u = 1, v = 0; while (b != 0) { lint t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= m; if (u < 0) u += m; return u; } lint modpow(lint x, lint n, lint m = Mod) { if (m == 1) return 0; lint res = 1; x %= m; while (n > 0) { if (n & 1) res = res * x % m; x = x * x % m; n >>= 1; } return res; } lint intpow(lint x, lint n) { lint res = 1; while (n > 0) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } inline lint comb(lint n, lint r) { if (n < 0 || r < 0 || n < r) return 0; if (r == 0 || r == n) return 1; return fact[n] * fact_inv[n - r] % Mod * fact_inv[r] % Mod; } inline lint perm(lint n, lint r) { if (n < 0 || r < 0 || n < r) return 0; return fact[n] * fact_inv[n - r] % Mod; } template<typename T = int> vector<T> as_vector(const string& str) { vector<T> res(str.size()); auto p_res = res.begin(); auto p_str = str.begin(); auto end_str = str.end(); while(p_str != end_str) { *p_res++ = *p_str++ - '0'; } return res; } template<typename T> vector<T> compressed(vector<T> v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); return v; } template<typename T> vector<int> compressed_index(vector<T> v) { const int n = v.size(); const auto c = compressed(v); vector<int> res(n); for (int i = 0; i < n; ++i) { res[i] = lower_bound(all(c), v[i]) - c.begin(); } return res; } // { 値, 個数 } template<typename T> pair<vector<T>, vector<int>> compressed_pair(vector<T> v) { size_t n = v.size(); sort(all(v)); vector<T> cnt, val; cnt.reserve(n); val.reserve(n); int now_cnt = 1; for (size_t i = 1; i < n; ++i) { if (v[i - 1] != v[i]) { cnt.push_back(now_cnt); val.push_back(v[i - 1]); now_cnt = 1; } else ++now_cnt; } cnt.push_back(now_cnt); val.push_back(v.back()); return { val, cnt }; } class Factring { private: const lint max_n; vector<lint> sieve; public: explicit Factring(lint max_n) : max_n(max_n) , sieve(max_n + 1) { iota(sieve.begin(), sieve.end(), 0); for (lint i = 2; i * i <= max_n; ++i) { if (sieve[i] < i) continue; for (lint j = i * i; j <= max_n; j += i) { if (sieve[j] == j) sieve[j] = i; } } } unordered_map<lint, lint> calc(lint x) const { unordered_map<lint, lint> res; while (x > 1) { ++res[sieve[x]]; x /= sieve[x]; } return res; } }; struct UnionFind { int n; vector<int> par, rank, siz, es; int c; UnionFind() = default; explicit UnionFind(int _n) : n(_n) , par(_n) , rank(_n) , siz(_n, 1) , es(_n) , c(_n) { iota(par.begin(), par.end(), 0); } int root(int x) { while (par[x] != x) { x = par[x] = par[par[x]]; } return x; } bool same(int x, int y) { return root(x) == root(y); } void unite(int x, int y) { x = root(x); y = root(y); if (x == y) ++es[x]; else { c--; if (rank[x] < rank[y]) { par[x] = y; siz[y] += siz[x]; es[y] += es[x] + 1; } else { par[y] = x; if (rank[x] == rank[y]) ++rank[x]; siz[x] += siz[y]; es[x] += es[y] + 1; } } } int count(int x) { return siz[root(x)]; } vector<vector<int>> groups() { vector<int> roots(n), group_size(n); for (int i = 0; i < n; ++i) { roots[i] = root(i); ++group_size[roots[i]]; } vector<vector<int>> res(n); for (int i = 0; i < n; ++i) { res.reserve(group_size[i]); } for (int i = 0; i < n; ++i) { res[roots[i]].push_back(i); } res.erase( remove_if(res.begin(), res.end(), [](const vector<int>& v) { return v.empty(); }), res.end() ); return res; } }; template<typename T> class CumulativeSum { private: const int n; vector<T> dat; public: CumulativeSum() = default; explicit CumulativeSum(const int n) : n(n), dat(n + 1) {} CumulativeSum(const vector<T>& vec) : n(vec.size()) , dat(n + 1) { for (int i = 0; i < n; ++i) dat[i + 1] = vec[i]; } void add(const int i, const T& x) { dat[i + 1] += x; } void build() { for (int i = 0; i < n; ++i) { dat[i + 1] += dat[i]; } } // [l, r) T sum(const int l, const int r) const { return dat[r] - dat[l]; } // [0, a) T sum(const int a) const { return dat[a]; } }; template<typename T> class CumulativeSum2D { private: vector<vector<T>> dat; public: CumulativeSum2D() = default; explicit CumulativeSum2D(size_t n) : dat(n + 1, vector<T>(n + 1)) {} CumulativeSum2D(size_t h, size_t w) : dat(h + 1, vector<T>(w + 1)) {} CumulativeSum2D(const vector<vector<T>>& vec) { const size_t h = vec.size(), w = vec.front().size(); dat.resize(h + 1, vector<T>(w + 1)); for (size_t i = 0; i < h; ++i) { for (size_t j = 0; j < w; ++j) { dat[i + 1][j + 1] = dat[i][j + 1] + dat[i + 1][j] - dat[i][j] + vec[i][j]; } } } void add(int h, int w, int v) { dat[h + 1][w + 1] += v; } void build() { const size_t h = dat.size() - 1, w = dat.front().size() - 1; for (size_t i = 0; i < h; ++i) { for (size_t j = 0; j < w; ++j) { dat[i + 1][j + 1] = dat[i][j + 1] + dat[i + 1][j] - dat[i][j]; } } } // [0, h) × [0, w) T sum(int h, int w) const { return sum(0, 0, h, w); } // [h1, h2) × [w1, w2) T sum(int h1, int w1, int h2, int w2) const { return dat[h2][w2] - dat[h1][w2] - dat[h2][w1] + dat[h1][w1]; } }; template<typename T> class BinaryIndexedTree { private: const int size; vector<T> dat; public: explicit BinaryIndexedTree(const int size) : size(size) , dat(size + 1) {} explicit BinaryIndexedTree(const vector<T>& vec) : size(vec.size()) , dat(size + 1) { for (int i = 0; i < size; ++i) dat[i + 1] = vec[i]; for (int i = 0; i <= size; ++i) { const int j = i + (i & -i); if (j <= size) dat[j] += dat[i]; } } // 0-indexed void add(const int a, const T v) { for (int x = a + 1; x <= size; x += (x & -x)) dat[x] += v; } // 0-indexed void set(const int a, const T v) { add(a, v - dat[a]); } // [0, a) T sum(const int a) const { T res = 0; for (int x = a; x > 0; x -= x & -x) res += dat[x]; return res; } // [a, b) T sum(const int a, const int b) const { return sum(b) - sum(a); } const T& operator[](const size_t x) const { return dat[x + 1]; } }; struct Point { lint x, y; Point() = default; constexpr Point(lint x_, lint y_) : x(x_), y(y_) {} constexpr bool operator<(const Point& p) const { if (x != p.x) return x < p.x; return y < p.y; } constexpr Point operator+() const { return *this; } constexpr Point operator-() const { return { -x, -y }; } constexpr Point operator+(const Point& p) const { return { x + p.x, y + p.y }; } constexpr Point operator-(const Point& p) const { return { x - p.x, y - p.y }; } constexpr Point operator*(lint s) const { return { x * s, y * s }; } constexpr Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } constexpr Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } constexpr lint dot(const Point& p) const { return x * p.x + y * p.y; } constexpr lint cross(const Point& p) const { return x * p.y - y * p.x; } constexpr lint lengthSq() const { return x * x + y * y; } double length() const { return hypot(x, y); } constexpr lint distanceSq(const Point& p) const { return (*this - p).lengthSq(); } double distance(const Point& p) const { return (*this - p).length(); } friend constexpr Point operator*(lint s, const Point& p) { return p * s; } friend istream& operator>>(istream& is, Point& p) { return is >> p.x >> p.y; } }; template<typename T, typename U> T nearest_value(const vector<T>& v, const U& value) { auto itr = lower_bound(v.begin(), v.end(), value); if (itr == v.begin()) return *itr; if (itr == v.end()) return *prev(itr); return min(*itr - value, value - *prev(itr)) + value; } class BitVector { public: using u8 = uint8_t; using u16 = uint16_t; int n, l; static constexpr int small_per_large = 32; static constexpr int large_size = 256, small_size = 8; vector<u8> bit; vector<u16> large; vector<vector<u8>> small; static inline const vector<u8> table = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, }; explicit BitVector(int _n) : n(_n) , l((_n + large_size - 1) / large_size) { bit.assign(l * small_per_large, 0); large.assign(l + 1, 0); small.assign(l, vector<u8>(small_per_large, 0)); } explicit BitVector(vector<bool> vec) : n(vec.size()) , l((n + large_size - 1) / large_size) { bit.resize(l * small_per_large); large.assign(l + 1, 0); small.assign(l, vector<u8>(small_per_large, 0)); for (int i = 0; i < n; ++i) set(i, vec[i]); } void set(int p, bool b) { const int bp = p >> 8; const int a = p & 7; if (b) bit[bp] |= 1 << a; else bit[bp] &= ~(1 << a); } bool get(int p) const { const int bp = p >> 8; const int a = p & 7; return bit[bp] >> a & 1; } void build() { large[0] = 0; for (int i = 0; i < l; ++i) { small[i][0] = 0; for (int j = 0; j < small_per_large - 1; ++j) { small[i][j + 1] = small[i][j] + table[bit[small_per_large * i + j]]; } large[i + 1] = large[i] + small[i][small_per_large - 1] + table[bit[small_per_large * i + small_per_large - 1]]; } } // [0, p) int rank(int p) const { const int lp = p >> 8; const int sp = (p & 255) >> 3; const int a = p & 7; const int rem = bit[p >> 3] & ((1 << a) - 1); return large[lp] + small[lp][sp] + table[rem]; } int select(int n) const { // todo } }; int main() { lint a, b; cin >> a >> b; if (a > b) swap(a, b); int d = b - a, ans = 2 * a; if (d <= 1) ans += d; else { ans += 1; d -= 1; ans += 2 * d; } cout << ans << endl; }