結果
問題 | No.1864 Shortest Paths Counting |
ユーザー | Forested |
提出日時 | 2022-03-04 21:36:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 147 ms / 2,000 ms |
コード長 | 12,145 bytes |
コンパイル時間 | 1,403 ms |
コンパイル使用メモリ | 134,400 KB |
実行使用メモリ | 9,472 KB |
最終ジャッジ日時 | 2024-07-18 19:38:07 |
合計ジャッジ時間 | 6,338 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 139 ms
9,344 KB |
testcase_10 | AC | 141 ms
9,344 KB |
testcase_11 | AC | 123 ms
9,344 KB |
testcase_12 | AC | 122 ms
9,472 KB |
testcase_13 | AC | 121 ms
9,472 KB |
testcase_14 | AC | 137 ms
9,472 KB |
testcase_15 | AC | 121 ms
9,472 KB |
testcase_16 | AC | 126 ms
9,472 KB |
testcase_17 | AC | 122 ms
9,472 KB |
testcase_18 | AC | 138 ms
9,472 KB |
testcase_19 | AC | 137 ms
9,472 KB |
testcase_20 | AC | 139 ms
9,472 KB |
testcase_21 | AC | 124 ms
9,344 KB |
testcase_22 | AC | 125 ms
9,472 KB |
testcase_23 | AC | 147 ms
9,472 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 81 ms
8,704 KB |
testcase_26 | AC | 106 ms
9,344 KB |
ソースコード
// ===== template.hpp ===== #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i) #define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; using i32 = signed int; using i64 = signed long long; using i128 = __int128_t; template <typename T> using Vec = vector<T>; template <typename T> bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template <typename T> bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } [[maybe_unused]] constexpr i32 inf = 1000000100; [[maybe_unused]] constexpr i64 inf64 = 3000000000000000100; struct SetIO { SetIO() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); } } set_io; // ===== template.hpp ===== #ifdef DEBUGF #include "../new_library/other/debug.hpp" #else #define DBG(x) (void) 0 #endif // ===== coordinate_compression.hpp ===== #ifndef COORDINATE_COMPRESSION_HPP #define COORDINATE_COMPRESSION_HPP #include <algorithm> #include <vector> template <typename T> class CoordinateCompression { std::vector<T> data; std::size_t size_sum() { return 0; } template <typename... Tail> std::size_t size_sum(const std::vector<T> &head, const Tail &...tail) { return head.size() + size_sum(tail...); } void push() {} template <typename... Tail> void push(const std::vector<T> &head, const Tail &...tail) { for (const T &ele : head) { data.emplace_back(ele); } push(tail...); } void compress() {} template <typename... Tail> void compress(std::vector<T> &head, Tail &...tail) { for (T &ele : head) { ele = (T)(std::lower_bound(data.begin(), data.end(), ele) - data.begin()); } compress(tail...); } public: template <typename... V> CoordinateCompression(V &...v) { data.reserve(size_sum(v...)); push(v...); std::sort(data.begin(), data.end()); data.erase(std::unique(data.begin(), data.end()), data.end()); compress(v...); } const T &operator[](const T &ele) const { return data[ele]; } std::size_t size() const { return data.size(); } bool contains(const T &ele) const { auto it = std::lower_bound(data.begin(), data.end(), ele); return it != data.end() && *it == ele; } T cc(const T &ele) const { return std::lower_bound(data.begin(), data.end(), ele) - data.begin(); } }; #endif // ===== coordinate_compression.hpp ===== // ===== fenwick_tree.hpp ===== #ifndef FENWICK_TREE_HPP #define FENWICK_TREE_HPP #include <cassert> #include <vector> // ===== operations.hpp ===== #ifndef OPERATIONS_HPP #define OPERATIONS_HPP #include <limits> #include <utility> template <typename T> struct Add { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; } static Value inv(const Value &x) { return -x; } }; template <typename T> struct Mul { using Value = T; static Value id() { return Value(1); } static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; } static Value inv(const Value &x) { return Value(1) / x; } }; template <typename T> struct Min { using Value = T; static Value id() { return std::numeric_limits<T>::max(); } static Value op(const Value &lhs, const Value &rhs) { return std::min(lhs, rhs); } }; template <typename T> struct Max { using Value = T; static Value id() { return std::numeric_limits<Value>::min(); } static Value op(const Value &lhs, const Value &rhs) { return std::max(lhs, rhs); } }; template <typename T> struct Xor { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; } static Value inv(const Value &x) { return x; } }; template <typename Monoid> struct Reversible { using Value = std::pair<typename Monoid::Value, typename Monoid::Value>; static Value id() { return Value(Monoid::id(), Monoid::id()); } static Value op(const Value &v1, const Value &v2) { return Value( Monoid::op(v1.first, v2.first), Monoid::op(v2.second, v1.second)); } }; #endif // ===== operations.hpp ===== template <typename CommutativeGroup> class FenwickTree { public: using Value = typename CommutativeGroup::Value; private: std::vector<Value> data; public: FenwickTree(std::size_t n) : data(n, CommutativeGroup::id()) {} void add(std::size_t idx, const Value &x) { assert(idx < data.size()); for (; idx < data.size(); idx |= idx + 1) { data[idx] = CommutativeGroup::op(data[idx], x); } } Value sum(std::size_t r) const { assert(r <= data.size()); Value ret = CommutativeGroup::id(); for (; r > 0; r &= r - 1) { ret = CommutativeGroup::op(ret, data[r - 1]); } return ret; } Value sum(std::size_t l, std::size_t r) const { assert(l <= r && r <= data.size()); return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l))); } }; #endif // ===== fenwick_tree.hpp ===== // ===== mod_int.hpp ===== #ifndef MOD_INT_HPP #define MOD_INT_HPP #include <cassert> #include <iostream> #include <type_traits> // ===== utils.hpp ===== #ifndef UTILS_HPP #define UTILS_HPP #include <cstddef> constexpr bool is_prime(unsigned n) { if (n == 0 || n == 1) return false; for (unsigned i = 2; i * i <= n; ++i) { if (n % i == 0) return false; } return true; } constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) { unsigned ret = 1, self = x; while (y != 0) { if (y & 1) ret = (unsigned long long)ret * self % mod; self = (unsigned long long)self * self % mod; y >>= 1; } return ret; } template <unsigned mod> constexpr unsigned primitive_root() { static_assert(is_prime(mod), "`mod` must be a prime number."); if (mod == 2) return 1; unsigned primes[32] = {}; std::size_t it = 0; { unsigned m = mod - 1; for (unsigned i = 2; i * i <= m; ++i) { if (m % i == 0) { primes[it++] = i; while (m % i == 0) m /= i; } } if (m != 1) primes[it++] = m; } for (unsigned i = 2; i < mod; ++i) { bool ok = true; for (std::size_t j = 0; j < it; ++j) { if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) { ok = false; break; } } if (ok) return i; } return 0; } #endif // ===== utils.hpp ===== template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr> constexpr unsigned safe_mod(T x, unsigned mod) { if (x < 0) { return (unsigned)(x % (T)mod + mod); } else { return (unsigned)(x % (T)mod); } } template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr> constexpr unsigned safe_mod(T x, unsigned mod) { return (unsigned)(x % mod); } template <unsigned mod> class ModInt { static_assert(mod != 0, "`mod` must not be equal to 0."); static_assert( mod < (1u << 31), "`mod` must be less than (1u << 31) = 2147483648."); unsigned val; public: constexpr ModInt() : val(0) {} template <typename T> constexpr ModInt(T x) : val(safe_mod(x, mod)) {} static constexpr ModInt raw(unsigned x) { ModInt<mod> ret; ret.val = x; return ret; } constexpr unsigned get_val() const { return val; } constexpr ModInt operator+() const { return *this; } constexpr ModInt operator-() const { return ModInt<mod>(0u) - *this; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if (val >= mod) val -= mod; return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { if (val < rhs.val) val += mod; val -= rhs.val; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { val = (unsigned long long)val * rhs.inv().val % mod; return *this; } friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) += rhs; } friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) -= rhs; } friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) *= rhs; } friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) /= rhs; } constexpr ModInt pow(unsigned long long x) const { ModInt<mod> ret = ModInt<mod>::raw(1); ModInt<mod> self = *this; while (x != 0) { if (x & 1) ret *= self; self *= self; x >>= 1; } return ret; } constexpr ModInt inv() const { static_assert(is_prime(mod), "`mod` must be a prime number."); assert(val != 0); return this->pow(mod - 2); } friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) { is >> x.val; // x.val %= mod; return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) { os << x.val; return os; } friend bool operator==(const ModInt &lhs, const ModInt &rhs) { return lhs.val == rhs.val; } friend bool operator!=(const ModInt &lhs, const ModInt &rhs) { return lhs.val != rhs.val; } }; [[maybe_unused]] constexpr unsigned mod998244353 = 998244353; [[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007; #endif // ===== mod_int.hpp ===== using Mint = ModInt<mod998244353>; int main() { i32 n; cin >> n; Vec<i64> x(n), y(n); REP(i, n) { cin >> x[i] >> y[i]; } REP(i, n) { i64 nx = x[i] - y[i]; i64 ny = x[i] + y[i]; x[i] = nx; y[i] = ny; } PER(i, n) { x[i] -= x[0]; y[i] -= y[0]; } if (x[n - 1] < 0) { REP(i, n) { x[i] *= -1; } } if (y[n - 1] < 0) { REP(i, n) { y[i] *= -1; } } CoordinateCompression<i64> ccy(y); DBG(x); DBG(y); Vec<i32> idx(n); iota(ALL(idx), 0); sort(ALL(idx), [&](i32 i, i32 j) -> bool { if (x[i] == x[j]) { return y[i] > y[j]; } else { return x[i] > x[j]; } }); DBG(idx); FenwickTree<Add<Mint>> fw(ccy.size()); for (i32 i : idx) { Mint w = fw.sum(y[i], ccy.size()); fw.add(y[i], w); if (i == n - 1) { fw.add(y[i], Mint::raw(1)); } if (i == 0) { cout << w << '\n'; } } }