結果

問題 No.1864 Shortest Paths Counting
ユーザー ForestedForested
提出日時 2022-03-04 21:36:38
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 147 ms / 2,000 ms
コード長 12,145 bytes
コンパイル時間 1,403 ms
コンパイル使用メモリ 134,400 KB
実行使用メモリ 9,472 KB
最終ジャッジ日時 2024-07-18 19:38:07
合計ジャッジ時間 6,338 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 139 ms
9,344 KB
testcase_10 AC 141 ms
9,344 KB
testcase_11 AC 123 ms
9,344 KB
testcase_12 AC 122 ms
9,472 KB
testcase_13 AC 121 ms
9,472 KB
testcase_14 AC 137 ms
9,472 KB
testcase_15 AC 121 ms
9,472 KB
testcase_16 AC 126 ms
9,472 KB
testcase_17 AC 122 ms
9,472 KB
testcase_18 AC 138 ms
9,472 KB
testcase_19 AC 137 ms
9,472 KB
testcase_20 AC 139 ms
9,472 KB
testcase_21 AC 124 ms
9,344 KB
testcase_22 AC 125 ms
9,472 KB
testcase_23 AC 147 ms
9,472 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 81 ms
8,704 KB
testcase_26 AC 106 ms
9,344 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// ===== template.hpp =====
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i)
#define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i)
#define ALL(x) begin(x), end(x)

using namespace std;

using u32 = unsigned int;
using u64 = unsigned long long;
using u128 = __uint128_t;
using i32 = signed int;
using i64 = signed long long;
using i128 = __int128_t;

template <typename T>
using Vec = vector<T>;

template <typename T>
bool chmin(T &x, const T &y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}

[[maybe_unused]] constexpr i32 inf = 1000000100;
[[maybe_unused]] constexpr i64 inf64 = 3000000000000000100;

struct SetIO {
    SetIO() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout << fixed << setprecision(10);
    }
} set_io;
// ===== template.hpp =====

#ifdef DEBUGF
#include  "../new_library/other/debug.hpp"
#else
#define DBG(x) (void) 0
#endif

// ===== coordinate_compression.hpp =====
#ifndef COORDINATE_COMPRESSION_HPP
#define COORDINATE_COMPRESSION_HPP

#include <algorithm>
#include <vector>

template <typename T>
class CoordinateCompression {
    std::vector<T> data;

    std::size_t size_sum() {
        return 0;
    }

    template <typename... Tail>
    std::size_t size_sum(const std::vector<T> &head, const Tail &...tail) {
        return head.size() + size_sum(tail...);
    }

    void push() {}

    template <typename... Tail>
    void push(const std::vector<T> &head, const Tail &...tail) {
        for (const T &ele : head) {
            data.emplace_back(ele);
        }
        push(tail...);
    }

    void compress() {}

    template <typename... Tail>
    void compress(std::vector<T> &head, Tail &...tail) {
        for (T &ele : head) {
            ele =
                (T)(std::lower_bound(data.begin(), data.end(), ele) -
                    data.begin());
        }
        compress(tail...);
    }

public:
    template <typename... V>
    CoordinateCompression(V &...v) {
        data.reserve(size_sum(v...));
        push(v...);
        std::sort(data.begin(), data.end());
        data.erase(std::unique(data.begin(), data.end()), data.end());
        compress(v...);
    }

    const T &operator[](const T &ele) const {
        return data[ele];
    }

    std::size_t size() const {
        return data.size();
    }
    
    bool contains(const T &ele) const {
        auto it = std::lower_bound(data.begin(), data.end(), ele);
        return it != data.end() && *it == ele;
    }
    
    T cc(const T &ele) const {
        return std::lower_bound(data.begin(), data.end(), ele) - data.begin();
    }
};

#endif
// ===== coordinate_compression.hpp =====
// ===== fenwick_tree.hpp =====
#ifndef FENWICK_TREE_HPP
#define FENWICK_TREE_HPP

#include <cassert>
#include <vector>

// ===== operations.hpp =====
#ifndef OPERATIONS_HPP
#define OPERATIONS_HPP

#include <limits>
#include <utility>

template <typename T>
struct Add {
    using Value = T;
    static Value id() {
        return T(0);
    }
    static Value op(const Value &lhs, const Value &rhs) {
        return lhs + rhs;
    }
    static Value inv(const Value &x) {
        return -x;
    }
};

template <typename T>
struct Mul {
    using Value = T;
    static Value id() {
        return Value(1);
    }
    static Value op(const Value &lhs, const Value &rhs) {
        return lhs * rhs;
    }
    static Value inv(const Value &x) {
        return Value(1) / x;
    }
};

template <typename T>
struct Min {
    using Value = T;
    static Value id() {
        return std::numeric_limits<T>::max();
    }
    static Value op(const Value &lhs, const Value &rhs) {
        return std::min(lhs, rhs);
    }
};

template <typename T>
struct Max {
    using Value = T;
    static Value id() {
        return std::numeric_limits<Value>::min();
    }
    static Value op(const Value &lhs, const Value &rhs) {
        return std::max(lhs, rhs);
    }
};

template <typename T>
struct Xor {
    using Value = T;
    static Value id() {
        return T(0);
    }
    static Value op(const Value &lhs, const Value &rhs) {
        return lhs ^ rhs;
    }
    static Value inv(const Value &x) {
        return x;
    }
};

template <typename Monoid>
struct Reversible {
    using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;
    static Value id() {
        return Value(Monoid::id(), Monoid::id());
    }
    static Value op(const Value &v1, const Value &v2) {
        return Value(
            Monoid::op(v1.first, v2.first),
            Monoid::op(v2.second, v1.second));
    }
};

#endif
// ===== operations.hpp =====

template <typename CommutativeGroup>
class FenwickTree {
public:
    using Value = typename CommutativeGroup::Value;

private:
    std::vector<Value> data;

public:
    FenwickTree(std::size_t n) : data(n, CommutativeGroup::id()) {}

    void add(std::size_t idx, const Value &x) {
        assert(idx < data.size());
        for (; idx < data.size(); idx |= idx + 1) {
            data[idx] = CommutativeGroup::op(data[idx], x);
        }
    }

    Value sum(std::size_t r) const {
        assert(r <= data.size());
        Value ret = CommutativeGroup::id();
        for (; r > 0; r &= r - 1) {
            ret = CommutativeGroup::op(ret, data[r - 1]);
        }
        return ret;
    }

    Value sum(std::size_t l, std::size_t r) const {
        assert(l <= r && r <= data.size());
        return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l)));
    }
};

#endif
// ===== fenwick_tree.hpp =====
// ===== mod_int.hpp =====
#ifndef MOD_INT_HPP
#define MOD_INT_HPP

#include <cassert>
#include <iostream>
#include <type_traits>

// ===== utils.hpp =====
#ifndef UTILS_HPP
#define UTILS_HPP

#include <cstddef>

constexpr bool is_prime(unsigned n) {
    if (n == 0 || n == 1)
        return false;
    for (unsigned i = 2; i * i <= n; ++i) {
        if (n % i == 0)
            return false;
    }
    return true;
}

constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {
    unsigned ret = 1, self = x;
    while (y != 0) {
        if (y & 1)
            ret = (unsigned long long)ret * self % mod;
        self = (unsigned long long)self * self % mod;
        y >>= 1;
    }
    return ret;
}

template <unsigned mod>
constexpr unsigned primitive_root() {
    static_assert(is_prime(mod), "`mod` must be a prime number.");
    if (mod == 2)
        return 1;

    unsigned primes[32] = {};
    std::size_t it = 0;
    {
        unsigned m = mod - 1;
        for (unsigned i = 2; i * i <= m; ++i) {
            if (m % i == 0) {
                primes[it++] = i;
                while (m % i == 0)
                    m /= i;
            }
        }
        if (m != 1)
            primes[it++] = m;
    }
    for (unsigned i = 2; i < mod; ++i) {
        bool ok = true;
        for (std::size_t j = 0; j < it; ++j) {
            if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {
                ok = false;
                break;
            }
        }
        if (ok)
            return i;
    }
    return 0;
}

#endif
// ===== utils.hpp =====

template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>
constexpr unsigned safe_mod(T x, unsigned mod) {
    if (x < 0) {
        return (unsigned)(x % (T)mod + mod);
    } else {
        return (unsigned)(x % (T)mod);
    }
}

template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>
constexpr unsigned safe_mod(T x, unsigned mod) {
    return (unsigned)(x % mod);
}

template <unsigned mod>
class ModInt {
    static_assert(mod != 0, "`mod` must not be equal to 0.");
    static_assert(
        mod < (1u << 31),
        "`mod` must be less than (1u << 31) = 2147483648.");

    unsigned val;

public:
    constexpr ModInt() : val(0) {}
    template <typename T>
    constexpr ModInt(T x) : val(safe_mod(x, mod)) {}

    static constexpr ModInt raw(unsigned x) {
        ModInt<mod> ret;
        ret.val = x;
        return ret;
    }

    constexpr unsigned get_val() const {
        return val;
    }

    constexpr ModInt operator+() const {
        return *this;
    }
    constexpr ModInt operator-() const {
        return ModInt<mod>(0u) - *this;
    }

    constexpr ModInt &operator+=(const ModInt &rhs) {
        val += rhs.val;
        if (val >= mod)
            val -= mod;
        return *this;
    }
    constexpr ModInt &operator-=(const ModInt &rhs) {
        if (val < rhs.val)
            val += mod;
        val -= rhs.val;
        return *this;
    }
    constexpr ModInt &operator*=(const ModInt &rhs) {
        val = (unsigned long long)val * rhs.val % mod;
        return *this;
    }
    constexpr ModInt &operator/=(const ModInt &rhs) {
        val = (unsigned long long)val * rhs.inv().val % mod;
        return *this;
    }

    friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) += rhs;
    }
    friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) -= rhs;
    }
    friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) *= rhs;
    }
    friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) /= rhs;
    }

    constexpr ModInt pow(unsigned long long x) const {
        ModInt<mod> ret = ModInt<mod>::raw(1);
        ModInt<mod> self = *this;
        while (x != 0) {
            if (x & 1)
                ret *= self;
            self *= self;
            x >>= 1;
        }
        return ret;
    }
    constexpr ModInt inv() const {
        static_assert(is_prime(mod), "`mod` must be a prime number.");
        assert(val != 0);
        return this->pow(mod - 2);
    }

    friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {
        is >> x.val;
        // x.val %= mod;
        return is;
    }

    friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {
        os << x.val;
        return os;
    }

    friend bool operator==(const ModInt &lhs, const ModInt &rhs) {
        return lhs.val == rhs.val;
    }
    
    friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {
        return lhs.val != rhs.val;
    }
};

[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;
[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;

#endif
// ===== mod_int.hpp =====

using Mint = ModInt<mod998244353>;

int main() {
    i32 n;
    cin >> n;
    Vec<i64> x(n), y(n);
    REP(i, n) {
        cin >> x[i] >> y[i];
    }
    
    REP(i, n) {
        i64 nx = x[i] - y[i];
        i64 ny = x[i] + y[i];
        x[i] = nx;
        y[i] = ny;
    }
    
    PER(i, n) {
        x[i] -= x[0];
        y[i] -= y[0];
    }
    if (x[n - 1] < 0) {
        REP(i, n) {
            x[i] *= -1;
        }
    }
    if (y[n - 1] < 0) {
        REP(i, n) {
            y[i] *= -1;
        }
    }
    
    CoordinateCompression<i64> ccy(y);
    
    DBG(x);
    DBG(y);
    
    Vec<i32> idx(n);
    iota(ALL(idx), 0);
    sort(ALL(idx), [&](i32 i, i32 j) -> bool {
        if (x[i] == x[j]) {
            return y[i] > y[j];
        } else {
            return x[i] > x[j];
        }
    });
    DBG(idx);
    FenwickTree<Add<Mint>> fw(ccy.size());
    for (i32 i : idx) {
        Mint w = fw.sum(y[i], ccy.size());
        fw.add(y[i], w);
        if (i == n - 1) {
            fw.add(y[i], Mint::raw(1));
        }
        if (i == 0) {
            cout << w << '\n';
        }
    }
}
0