結果

問題 No.1864 Shortest Paths Counting
ユーザー Forested
提出日時 2022-03-04 21:36:38
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 145 ms / 2,000 ms
コード長 12,145 bytes
コンパイル時間 1,609 ms
コンパイル使用メモリ 130,364 KB
最終ジャッジ日時 2025-01-28 04:56:15
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// ===== template.hpp =====
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i)
#define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i)
#define ALL(x) begin(x), end(x)
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using u128 = __uint128_t;
using i32 = signed int;
using i64 = signed long long;
using i128 = __int128_t;
template <typename T>
using Vec = vector<T>;
template <typename T>
bool chmin(T &x, const T &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
[[maybe_unused]] constexpr i32 inf = 1000000100;
[[maybe_unused]] constexpr i64 inf64 = 3000000000000000100;
struct SetIO {
SetIO() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(10);
}
} set_io;
// ===== template.hpp =====
#ifdef DEBUGF
#include "../new_library/other/debug.hpp"
#else
#define DBG(x) (void) 0
#endif
// ===== coordinate_compression.hpp =====
#ifndef COORDINATE_COMPRESSION_HPP
#define COORDINATE_COMPRESSION_HPP
#include <algorithm>
#include <vector>
template <typename T>
class CoordinateCompression {
std::vector<T> data;
std::size_t size_sum() {
return 0;
}
template <typename... Tail>
std::size_t size_sum(const std::vector<T> &head, const Tail &...tail) {
return head.size() + size_sum(tail...);
}
void push() {}
template <typename... Tail>
void push(const std::vector<T> &head, const Tail &...tail) {
for (const T &ele : head) {
data.emplace_back(ele);
}
push(tail...);
}
void compress() {}
template <typename... Tail>
void compress(std::vector<T> &head, Tail &...tail) {
for (T &ele : head) {
ele =
(T)(std::lower_bound(data.begin(), data.end(), ele) -
data.begin());
}
compress(tail...);
}
public:
template <typename... V>
CoordinateCompression(V &...v) {
data.reserve(size_sum(v...));
push(v...);
std::sort(data.begin(), data.end());
data.erase(std::unique(data.begin(), data.end()), data.end());
compress(v...);
}
const T &operator[](const T &ele) const {
return data[ele];
}
std::size_t size() const {
return data.size();
}
bool contains(const T &ele) const {
auto it = std::lower_bound(data.begin(), data.end(), ele);
return it != data.end() && *it == ele;
}
T cc(const T &ele) const {
return std::lower_bound(data.begin(), data.end(), ele) - data.begin();
}
};
#endif
// ===== coordinate_compression.hpp =====
// ===== fenwick_tree.hpp =====
#ifndef FENWICK_TREE_HPP
#define FENWICK_TREE_HPP
#include <cassert>
#include <vector>
// ===== operations.hpp =====
#ifndef OPERATIONS_HPP
#define OPERATIONS_HPP
#include <limits>
#include <utility>
template <typename T>
struct Add {
using Value = T;
static Value id() {
return T(0);
}
static Value op(const Value &lhs, const Value &rhs) {
return lhs + rhs;
}
static Value inv(const Value &x) {
return -x;
}
};
template <typename T>
struct Mul {
using Value = T;
static Value id() {
return Value(1);
}
static Value op(const Value &lhs, const Value &rhs) {
return lhs * rhs;
}
static Value inv(const Value &x) {
return Value(1) / x;
}
};
template <typename T>
struct Min {
using Value = T;
static Value id() {
return std::numeric_limits<T>::max();
}
static Value op(const Value &lhs, const Value &rhs) {
return std::min(lhs, rhs);
}
};
template <typename T>
struct Max {
using Value = T;
static Value id() {
return std::numeric_limits<Value>::min();
}
static Value op(const Value &lhs, const Value &rhs) {
return std::max(lhs, rhs);
}
};
template <typename T>
struct Xor {
using Value = T;
static Value id() {
return T(0);
}
static Value op(const Value &lhs, const Value &rhs) {
return lhs ^ rhs;
}
static Value inv(const Value &x) {
return x;
}
};
template <typename Monoid>
struct Reversible {
using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;
static Value id() {
return Value(Monoid::id(), Monoid::id());
}
static Value op(const Value &v1, const Value &v2) {
return Value(
Monoid::op(v1.first, v2.first),
Monoid::op(v2.second, v1.second));
}
};
#endif
// ===== operations.hpp =====
template <typename CommutativeGroup>
class FenwickTree {
public:
using Value = typename CommutativeGroup::Value;
private:
std::vector<Value> data;
public:
FenwickTree(std::size_t n) : data(n, CommutativeGroup::id()) {}
void add(std::size_t idx, const Value &x) {
assert(idx < data.size());
for (; idx < data.size(); idx |= idx + 1) {
data[idx] = CommutativeGroup::op(data[idx], x);
}
}
Value sum(std::size_t r) const {
assert(r <= data.size());
Value ret = CommutativeGroup::id();
for (; r > 0; r &= r - 1) {
ret = CommutativeGroup::op(ret, data[r - 1]);
}
return ret;
}
Value sum(std::size_t l, std::size_t r) const {
assert(l <= r && r <= data.size());
return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l)));
}
};
#endif
// ===== fenwick_tree.hpp =====
// ===== mod_int.hpp =====
#ifndef MOD_INT_HPP
#define MOD_INT_HPP
#include <cassert>
#include <iostream>
#include <type_traits>
// ===== utils.hpp =====
#ifndef UTILS_HPP
#define UTILS_HPP
#include <cstddef>
constexpr bool is_prime(unsigned n) {
if (n == 0 || n == 1)
return false;
for (unsigned i = 2; i * i <= n; ++i) {
if (n % i == 0)
return false;
}
return true;
}
constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {
unsigned ret = 1, self = x;
while (y != 0) {
if (y & 1)
ret = (unsigned long long)ret * self % mod;
self = (unsigned long long)self * self % mod;
y >>= 1;
}
return ret;
}
template <unsigned mod>
constexpr unsigned primitive_root() {
static_assert(is_prime(mod), "`mod` must be a prime number.");
if (mod == 2)
return 1;
unsigned primes[32] = {};
std::size_t it = 0;
{
unsigned m = mod - 1;
for (unsigned i = 2; i * i <= m; ++i) {
if (m % i == 0) {
primes[it++] = i;
while (m % i == 0)
m /= i;
}
}
if (m != 1)
primes[it++] = m;
}
for (unsigned i = 2; i < mod; ++i) {
bool ok = true;
for (std::size_t j = 0; j < it; ++j) {
if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {
ok = false;
break;
}
}
if (ok)
return i;
}
return 0;
}
#endif
// ===== utils.hpp =====
template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>
constexpr unsigned safe_mod(T x, unsigned mod) {
if (x < 0) {
return (unsigned)(x % (T)mod + mod);
} else {
return (unsigned)(x % (T)mod);
}
}
template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>
constexpr unsigned safe_mod(T x, unsigned mod) {
return (unsigned)(x % mod);
}
template <unsigned mod>
class ModInt {
static_assert(mod != 0, "`mod` must not be equal to 0.");
static_assert(
mod < (1u << 31),
"`mod` must be less than (1u << 31) = 2147483648.");
unsigned val;
public:
constexpr ModInt() : val(0) {}
template <typename T>
constexpr ModInt(T x) : val(safe_mod(x, mod)) {}
static constexpr ModInt raw(unsigned x) {
ModInt<mod> ret;
ret.val = x;
return ret;
}
constexpr unsigned get_val() const {
return val;
}
constexpr ModInt operator+() const {
return *this;
}
constexpr ModInt operator-() const {
return ModInt<mod>(0u) - *this;
}
constexpr ModInt &operator+=(const ModInt &rhs) {
val += rhs.val;
if (val >= mod)
val -= mod;
return *this;
}
constexpr ModInt &operator-=(const ModInt &rhs) {
if (val < rhs.val)
val += mod;
val -= rhs.val;
return *this;
}
constexpr ModInt &operator*=(const ModInt &rhs) {
val = (unsigned long long)val * rhs.val % mod;
return *this;
}
constexpr ModInt &operator/=(const ModInt &rhs) {
val = (unsigned long long)val * rhs.inv().val % mod;
return *this;
}
friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) += rhs;
}
friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) -= rhs;
}
friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) *= rhs;
}
friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {
return ModInt<mod>(lhs) /= rhs;
}
constexpr ModInt pow(unsigned long long x) const {
ModInt<mod> ret = ModInt<mod>::raw(1);
ModInt<mod> self = *this;
while (x != 0) {
if (x & 1)
ret *= self;
self *= self;
x >>= 1;
}
return ret;
}
constexpr ModInt inv() const {
static_assert(is_prime(mod), "`mod` must be a prime number.");
assert(val != 0);
return this->pow(mod - 2);
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {
is >> x.val;
// x.val %= mod;
return is;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {
os << x.val;
return os;
}
friend bool operator==(const ModInt &lhs, const ModInt &rhs) {
return lhs.val == rhs.val;
}
friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {
return lhs.val != rhs.val;
}
};
[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;
[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;
#endif
// ===== mod_int.hpp =====
using Mint = ModInt<mod998244353>;
int main() {
i32 n;
cin >> n;
Vec<i64> x(n), y(n);
REP(i, n) {
cin >> x[i] >> y[i];
}
REP(i, n) {
i64 nx = x[i] - y[i];
i64 ny = x[i] + y[i];
x[i] = nx;
y[i] = ny;
}
PER(i, n) {
x[i] -= x[0];
y[i] -= y[0];
}
if (x[n - 1] < 0) {
REP(i, n) {
x[i] *= -1;
}
}
if (y[n - 1] < 0) {
REP(i, n) {
y[i] *= -1;
}
}
CoordinateCompression<i64> ccy(y);
DBG(x);
DBG(y);
Vec<i32> idx(n);
iota(ALL(idx), 0);
sort(ALL(idx), [&](i32 i, i32 j) -> bool {
if (x[i] == x[j]) {
return y[i] > y[j];
} else {
return x[i] > x[j];
}
});
DBG(idx);
FenwickTree<Add<Mint>> fw(ccy.size());
for (i32 i : idx) {
Mint w = fw.sum(y[i], ccy.size());
fw.add(y[i], w);
if (i == n - 1) {
fw.add(y[i], Mint::raw(1));
}
if (i == 0) {
cout << w << '\n';
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0