結果
問題 | No.1864 Shortest Paths Counting |
ユーザー |
![]() |
提出日時 | 2022-03-04 21:36:38 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 145 ms / 2,000 ms |
コード長 | 12,145 bytes |
コンパイル時間 | 1,609 ms |
コンパイル使用メモリ | 130,364 KB |
最終ジャッジ日時 | 2025-01-28 04:56:15 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 23 |
ソースコード
// ===== template.hpp =====#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <map>#include <numeric>#include <queue>#include <set>#include <stack>#include <string>#include <tuple>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#define OVERRIDE(a, b, c, d, ...) d#define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i)#define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i)#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)#define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i)#define ALL(x) begin(x), end(x)using namespace std;using u32 = unsigned int;using u64 = unsigned long long;using u128 = __uint128_t;using i32 = signed int;using i64 = signed long long;using i128 = __int128_t;template <typename T>using Vec = vector<T>;template <typename T>bool chmin(T &x, const T &y) {if (x > y) {x = y;return true;}return false;}template <typename T>bool chmax(T &x, const T &y) {if (x < y) {x = y;return true;}return false;}[[maybe_unused]] constexpr i32 inf = 1000000100;[[maybe_unused]] constexpr i64 inf64 = 3000000000000000100;struct SetIO {SetIO() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(10);}} set_io;// ===== template.hpp =====#ifdef DEBUGF#include "../new_library/other/debug.hpp"#else#define DBG(x) (void) 0#endif// ===== coordinate_compression.hpp =====#ifndef COORDINATE_COMPRESSION_HPP#define COORDINATE_COMPRESSION_HPP#include <algorithm>#include <vector>template <typename T>class CoordinateCompression {std::vector<T> data;std::size_t size_sum() {return 0;}template <typename... Tail>std::size_t size_sum(const std::vector<T> &head, const Tail &...tail) {return head.size() + size_sum(tail...);}void push() {}template <typename... Tail>void push(const std::vector<T> &head, const Tail &...tail) {for (const T &ele : head) {data.emplace_back(ele);}push(tail...);}void compress() {}template <typename... Tail>void compress(std::vector<T> &head, Tail &...tail) {for (T &ele : head) {ele =(T)(std::lower_bound(data.begin(), data.end(), ele) -data.begin());}compress(tail...);}public:template <typename... V>CoordinateCompression(V &...v) {data.reserve(size_sum(v...));push(v...);std::sort(data.begin(), data.end());data.erase(std::unique(data.begin(), data.end()), data.end());compress(v...);}const T &operator[](const T &ele) const {return data[ele];}std::size_t size() const {return data.size();}bool contains(const T &ele) const {auto it = std::lower_bound(data.begin(), data.end(), ele);return it != data.end() && *it == ele;}T cc(const T &ele) const {return std::lower_bound(data.begin(), data.end(), ele) - data.begin();}};#endif// ===== coordinate_compression.hpp =====// ===== fenwick_tree.hpp =====#ifndef FENWICK_TREE_HPP#define FENWICK_TREE_HPP#include <cassert>#include <vector>// ===== operations.hpp =====#ifndef OPERATIONS_HPP#define OPERATIONS_HPP#include <limits>#include <utility>template <typename T>struct Add {using Value = T;static Value id() {return T(0);}static Value op(const Value &lhs, const Value &rhs) {return lhs + rhs;}static Value inv(const Value &x) {return -x;}};template <typename T>struct Mul {using Value = T;static Value id() {return Value(1);}static Value op(const Value &lhs, const Value &rhs) {return lhs * rhs;}static Value inv(const Value &x) {return Value(1) / x;}};template <typename T>struct Min {using Value = T;static Value id() {return std::numeric_limits<T>::max();}static Value op(const Value &lhs, const Value &rhs) {return std::min(lhs, rhs);}};template <typename T>struct Max {using Value = T;static Value id() {return std::numeric_limits<Value>::min();}static Value op(const Value &lhs, const Value &rhs) {return std::max(lhs, rhs);}};template <typename T>struct Xor {using Value = T;static Value id() {return T(0);}static Value op(const Value &lhs, const Value &rhs) {return lhs ^ rhs;}static Value inv(const Value &x) {return x;}};template <typename Monoid>struct Reversible {using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;static Value id() {return Value(Monoid::id(), Monoid::id());}static Value op(const Value &v1, const Value &v2) {return Value(Monoid::op(v1.first, v2.first),Monoid::op(v2.second, v1.second));}};#endif// ===== operations.hpp =====template <typename CommutativeGroup>class FenwickTree {public:using Value = typename CommutativeGroup::Value;private:std::vector<Value> data;public:FenwickTree(std::size_t n) : data(n, CommutativeGroup::id()) {}void add(std::size_t idx, const Value &x) {assert(idx < data.size());for (; idx < data.size(); idx |= idx + 1) {data[idx] = CommutativeGroup::op(data[idx], x);}}Value sum(std::size_t r) const {assert(r <= data.size());Value ret = CommutativeGroup::id();for (; r > 0; r &= r - 1) {ret = CommutativeGroup::op(ret, data[r - 1]);}return ret;}Value sum(std::size_t l, std::size_t r) const {assert(l <= r && r <= data.size());return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l)));}};#endif// ===== fenwick_tree.hpp =====// ===== mod_int.hpp =====#ifndef MOD_INT_HPP#define MOD_INT_HPP#include <cassert>#include <iostream>#include <type_traits>// ===== utils.hpp =====#ifndef UTILS_HPP#define UTILS_HPP#include <cstddef>constexpr bool is_prime(unsigned n) {if (n == 0 || n == 1)return false;for (unsigned i = 2; i * i <= n; ++i) {if (n % i == 0)return false;}return true;}constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {unsigned ret = 1, self = x;while (y != 0) {if (y & 1)ret = (unsigned long long)ret * self % mod;self = (unsigned long long)self * self % mod;y >>= 1;}return ret;}template <unsigned mod>constexpr unsigned primitive_root() {static_assert(is_prime(mod), "`mod` must be a prime number.");if (mod == 2)return 1;unsigned primes[32] = {};std::size_t it = 0;{unsigned m = mod - 1;for (unsigned i = 2; i * i <= m; ++i) {if (m % i == 0) {primes[it++] = i;while (m % i == 0)m /= i;}}if (m != 1)primes[it++] = m;}for (unsigned i = 2; i < mod; ++i) {bool ok = true;for (std::size_t j = 0; j < it; ++j) {if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {ok = false;break;}}if (ok)return i;}return 0;}#endif// ===== utils.hpp =====template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>constexpr unsigned safe_mod(T x, unsigned mod) {if (x < 0) {return (unsigned)(x % (T)mod + mod);} else {return (unsigned)(x % (T)mod);}}template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>constexpr unsigned safe_mod(T x, unsigned mod) {return (unsigned)(x % mod);}template <unsigned mod>class ModInt {static_assert(mod != 0, "`mod` must not be equal to 0.");static_assert(mod < (1u << 31),"`mod` must be less than (1u << 31) = 2147483648.");unsigned val;public:constexpr ModInt() : val(0) {}template <typename T>constexpr ModInt(T x) : val(safe_mod(x, mod)) {}static constexpr ModInt raw(unsigned x) {ModInt<mod> ret;ret.val = x;return ret;}constexpr unsigned get_val() const {return val;}constexpr ModInt operator+() const {return *this;}constexpr ModInt operator-() const {return ModInt<mod>(0u) - *this;}constexpr ModInt &operator+=(const ModInt &rhs) {val += rhs.val;if (val >= mod)val -= mod;return *this;}constexpr ModInt &operator-=(const ModInt &rhs) {if (val < rhs.val)val += mod;val -= rhs.val;return *this;}constexpr ModInt &operator*=(const ModInt &rhs) {val = (unsigned long long)val * rhs.val % mod;return *this;}constexpr ModInt &operator/=(const ModInt &rhs) {val = (unsigned long long)val * rhs.inv().val % mod;return *this;}friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) += rhs;}friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) -= rhs;}friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) *= rhs;}friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) /= rhs;}constexpr ModInt pow(unsigned long long x) const {ModInt<mod> ret = ModInt<mod>::raw(1);ModInt<mod> self = *this;while (x != 0) {if (x & 1)ret *= self;self *= self;x >>= 1;}return ret;}constexpr ModInt inv() const {static_assert(is_prime(mod), "`mod` must be a prime number.");assert(val != 0);return this->pow(mod - 2);}friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {is >> x.val;// x.val %= mod;return is;}friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {os << x.val;return os;}friend bool operator==(const ModInt &lhs, const ModInt &rhs) {return lhs.val == rhs.val;}friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {return lhs.val != rhs.val;}};[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;#endif// ===== mod_int.hpp =====using Mint = ModInt<mod998244353>;int main() {i32 n;cin >> n;Vec<i64> x(n), y(n);REP(i, n) {cin >> x[i] >> y[i];}REP(i, n) {i64 nx = x[i] - y[i];i64 ny = x[i] + y[i];x[i] = nx;y[i] = ny;}PER(i, n) {x[i] -= x[0];y[i] -= y[0];}if (x[n - 1] < 0) {REP(i, n) {x[i] *= -1;}}if (y[n - 1] < 0) {REP(i, n) {y[i] *= -1;}}CoordinateCompression<i64> ccy(y);DBG(x);DBG(y);Vec<i32> idx(n);iota(ALL(idx), 0);sort(ALL(idx), [&](i32 i, i32 j) -> bool {if (x[i] == x[j]) {return y[i] > y[j];} else {return x[i] > x[j];}});DBG(idx);FenwickTree<Add<Mint>> fw(ccy.size());for (i32 i : idx) {Mint w = fw.sum(y[i], ccy.size());fw.add(y[i], w);if (i == n - 1) {fw.add(y[i], Mint::raw(1));}if (i == 0) {cout << w << '\n';}}}