結果
問題 | No.1866 Unfair Tournament |
ユーザー |
|
提出日時 | 2022-03-06 20:58:23 |
言語 | Rust (1.83.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,341 bytes |
コンパイル時間 | 13,995 ms |
コンパイル使用メモリ | 397,056 KB |
実行使用メモリ | 19,388 KB |
最終ジャッジ日時 | 2024-07-21 07:00:45 |
合計ジャッジ時間 | 19,359 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 1 |
other | AC * 1 WA * 14 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::Read;#[allow(dead_code)]fn getline() -> String {let mut ret = String::new();std::io::stdin().read_line(&mut ret).ok().unwrap();ret}fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}#[allow(dead_code)]fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rsfn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {let mut fac = vec![MInt::new(1); w];let mut invfac = vec![0.into(); w];for i in 1..w {fac[i] = fac[i - 1] * i as i64;}invfac[w - 1] = fac[w - 1].inv();for i in (0..w - 1).rev() {invfac[i] = invfac[i + 1] * (i as i64 + 1);}(fac, invfac)}// FFT (in-place, verified as NTT only)// R: Ring + Copy// Verified by: https://judge.yosupo.jp/submission/53831// Adopts the technique used in https://judge.yosupo.jp/submission/3153.mod fft {use std::ops::*;// n should be a power of 2. zeta is a primitive n-th root of unity.// one is unity// Note that the result is bit-reversed.pub fn fft<R>(f: &mut [R], zeta: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let mut m = n;let mut base = zeta;unsafe {while m > 2 {m >>= 1;let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m);*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = w * (u - d);w = w * base;}r += 2 * m;}base = base * base;}if m > 1 {// m = 1let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}}}}pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let zeta = zeta_inv; // inverse FFTlet mut zetapow = Vec::with_capacity(20);{let mut m = 1;let mut cur = zeta;while m < n {zetapow.push(cur);cur = cur * cur;m *= 2;}}let mut m = 1;unsafe {if m < n {zetapow.pop();let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}m = 2;}while m < n {let base = zetapow.pop().unwrap();let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m) * w;*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = u - d;w = w * base;}r += 2 * m;}m *= 2;}}}}// Depends on: fft.rs, MInt.rs// Primitive root defaults to 3 (for 998244353); for other moduli change the value of it.fn conv(a: Vec<MInt>, b: Vec<MInt>) -> Vec<MInt> {let n = a.len() - 1;let m = b.len() - 1;let mut p = 1;while p <= n + m { p *= 2; }let mut f = vec![MInt::new(0); p];let mut g = vec![MInt::new(0); p];for i in 0..n + 1 { f[i] = a[i]; }for i in 0..m + 1 { g[i] = b[i]; }let fac = MInt::new(p as i64).inv();let zeta = MInt::new(3).pow((MOD - 1) / p as i64);fft::fft(&mut f, zeta, 1.into());fft::fft(&mut g, zeta, 1.into());for i in 0..p { f[i] *= g[i] * fac; }fft::inv_fft(&mut f, zeta.inv(), 1.into());f[..n + m + 1].to_vec()}// https://yukicoder.me/problems/no/1866 (4)// 選手 i にとって興味があるのは、自分より若い番号、老いた番号の選手と何回当たるかという情報だけである。// p = A/B として、前者が x 回、後者が N - x 回であるような順列に対して、優勝確率は p^(N-x)(1-p)^x である。// 欲しい情報は、2^k 人のグループの中で、自分より若い番号の人数が x であるときの自分より若い番号の優勝確率である。// これを dp[k][x] と置くと、dp[k] は dp[k - 1] から畳み込みで求めることができる。// 具体的には C(2^{k-1}, x) C(2^{k-1}, y) C(2^k, x+y)^{-1} *// (dp[k-1][x] * dp[k-1][y] + p * dp[k-1][x] * (1 - dp[k-1][y]) + p * (1 - dp[k-1][x]) * dp[k-1][y]) -> dp[k][x+y] という遷移がある。// これは畳み込みで計算できる。fn solve() {let n: usize = get();let a: i64 = get();let b: i64 = get();let (fac, invfac) = fact_init(1 << n);let p = MInt::new(b).inv() * a;let mut dp = vec![vec![]; n];dp[0] = vec![MInt::new(0), MInt::new(1)];for i in 1..n {let t = dp[i - 1].clone();let mut mt = t.clone();for v in &mut mt {*v = -*v + 1;}let mut u = conv(t.clone(), t.clone());let w = conv(t, mt);for i in 0..u.len() {u[i] += w[i] * p * 2;}dp[i] = u;}for j in 0..n {for i in 0..(1 << j) + 1 {dp[j][i] *= invfac[1 << j] * fac[i] * fac[(1 << j) - i];}}for j in 0..n {for i in 0..(1 << j) + 1 {dp[j][i] = (-p + 1) * dp[j][i] + p * (-dp[j][i] + 1);dp[j][i] *= fac[1 << j] * invfac[i] * invfac[(1 << j) - i];}}let mut ans = vec![MInt::new(1)];for j in 0..n {ans = conv(ans, dp[j].clone());}for i in 0..1 << n {println!("{}", ans[i] * invfac[(1 << n) - 1] * fac[i] * fac[(1 << n) - 1 - i]);}}fn main() {// In order to avoid potential stack overflow, spawn a new thread.let stack_size = 104_857_600; // 100 MBlet thd = std::thread::Builder::new().stack_size(stack_size);thd.spawn(|| solve()).unwrap().join().unwrap();}