結果
問題 | No.1866 Unfair Tournament |
ユーザー | koba-e964 |
提出日時 | 2022-03-06 23:39:10 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 591 ms / 3,000 ms |
コード長 | 11,683 bytes |
コンパイル時間 | 16,219 ms |
コンパイル使用メモリ | 379,016 KB |
実行使用メモリ | 19,260 KB |
最終ジャッジ日時 | 2024-07-21 10:09:27 |
合計ジャッジ時間 | 21,240 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 5 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 9 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 588 ms
19,260 KB |
testcase_13 | AC | 587 ms
19,260 KB |
testcase_14 | AC | 589 ms
19,260 KB |
testcase_15 | AC | 591 ms
19,260 KB |
testcase_16 | AC | 591 ms
19,260 KB |
testcase_17 | AC | 589 ms
19,260 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::Read; #[allow(dead_code)] fn getline() -> String { let mut ret = String::new(); std::io::stdin().read_line(&mut ret).ok().unwrap(); ret } fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec<u8> = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // Depends on MInt.rs fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) { let mut fac = vec![MInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1..w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0..w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // Depends on: fft.rs, MInt.rs // Primitive root defaults to 3 (for 998244353); for other moduli change the value of it. fn conv(a: Vec<MInt>, b: Vec<MInt>) -> Vec<MInt> { let n = a.len() - 1; let m = b.len() - 1; let mut p = 1; while p <= n + m { p *= 2; } let mut f = vec![MInt::new(0); p]; let mut g = vec![MInt::new(0); p]; for i in 0..n + 1 { f[i] = a[i]; } for i in 0..m + 1 { g[i] = b[i]; } let fac = MInt::new(p as i64).inv(); let zeta = MInt::new(3).pow((MOD - 1) / p as i64); fft::fft(&mut f, zeta, 1.into()); fft::fft(&mut g, zeta, 1.into()); for i in 0..p { f[i] *= g[i] * fac; } fft::inv_fft(&mut f, zeta.inv(), 1.into()); f[..n + m + 1].to_vec() } // https://yukicoder.me/problems/no/1866 (4) // 選手 i にとって興味があるのは、自分より若い番号、老いた番号の選手と何回当たるかという情報だけである。 // p = A/B として、前者が x 回、後者が N - x 回であるような順列に対して、優勝確率は p^(N-x)(1-p)^x である。 // 欲しい情報は、2^k 人のグループの中で、自分より若い番号の人数が x であるときの自分より若い番号の優勝確率である。 // これを dp[k][x] と置くと、dp[k] は dp[k - 1] から畳み込みで求めることができる。 // 具体的には C(2^{k-1}, x) C(2^{k-1}, y) C(2^k, x+y)^{-1} * // (dp[k-1][x] * dp[k-1][y] + p * dp[k-1][x] * (1 - dp[k-1][y]) + p * (1 - dp[k-1][x]) * dp[k-1][y]) -> dp[k][x+y] という遷移がある。 // これは畳み込みで計算できる。 fn solve() { let n: usize = get(); let a: i64 = get(); let b: i64 = get(); let (fac, invfac) = fact_init(1 << n); let p = MInt::new(b).inv() * a; let mut dp = vec![vec![]; n]; dp[0] = vec![MInt::new(0), MInt::new(1)]; for i in 1..n { let mut t = dp[i - 1].clone(); let mut mt = t.clone(); for v in &mut mt { *v = -*v + 1; } for j in 0..t.len() { let tmp = fac[1 << (i - 1)] * invfac[j] * invfac[(1 << (i - 1)) - j]; t[j] *= tmp; mt[j] *= tmp; } let mut u = conv(t.clone(), t.clone()); let w = conv(t, mt); for i in 0..u.len() { u[i] += w[i] * p * 2; } dp[i] = u; for k in 0..(1 << i) + 1 { dp[i][k] *= invfac[1 << i] * fac[k] * fac[(1 << i) - k]; } // eprintln!("{} => {:?}", i, dp[i]); } for j in 0..n { for i in 0..(1 << j) + 1 { dp[j][i] = (-p + 1) * dp[j][i] + p * (-dp[j][i] + 1); dp[j][i] *= fac[1 << j] * invfac[i] * invfac[(1 << j) - i]; } } let mut ans = vec![MInt::new(1)]; for j in 0..n { ans = conv(ans, dp[j].clone()); } let mut tot = MInt::new(0); for i in 0..1 << n { println!("{}", ans[i] * invfac[(1 << n) - 1] * fac[i] * fac[(1 << n) - 1 - i]); tot += ans[i] * invfac[(1 << n) - 1] * fac[i] * fac[(1 << n) - 1 - i]; } eprintln!("tot = {:?}", tot); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }