結果
問題 | No.659 徘徊迷路 |
ユーザー | kohei2019 |
提出日時 | 2022-03-07 23:58:31 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 332 ms / 2,000 ms |
コード長 | 8,192 bytes |
コンパイル時間 | 302 ms |
コンパイル使用メモリ | 82,444 KB |
実行使用メモリ | 76,976 KB |
最終ジャッジ日時 | 2024-07-22 21:06:42 |
合計ジャッジ時間 | 4,272 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 62 ms
70,016 KB |
testcase_01 | AC | 115 ms
76,692 KB |
testcase_02 | AC | 49 ms
55,988 KB |
testcase_03 | AC | 48 ms
57,116 KB |
testcase_04 | AC | 145 ms
76,960 KB |
testcase_05 | AC | 61 ms
69,008 KB |
testcase_06 | AC | 64 ms
71,244 KB |
testcase_07 | AC | 46 ms
56,636 KB |
testcase_08 | AC | 157 ms
76,868 KB |
testcase_09 | AC | 286 ms
76,472 KB |
testcase_10 | AC | 332 ms
76,432 KB |
testcase_11 | AC | 306 ms
76,976 KB |
testcase_12 | AC | 114 ms
76,560 KB |
testcase_13 | AC | 266 ms
76,792 KB |
testcase_14 | AC | 267 ms
76,448 KB |
testcase_15 | AC | 301 ms
76,272 KB |
testcase_16 | AC | 303 ms
76,480 KB |
ソースコード
import copy class matrix(): def __init__(self): self.mod = 10**9+7 def multiplication(self,arr1,arr2): ''' 例 arr1 2 3 4 5 6 7 8 9 arr2 1 2 3 4 5 6 7 8 ''' H = len(arr1) W = len(arr2[0]) arr3 = [[0]*W for i in range(H)] for i in range(H): for j in range(W): val = 0 for k in range(len(arr1[0])): val += arr1[i][k]*arr2[k][j] arr3[i][j] = val return arr3 def determinant(self,arr): ''' 正方行列N*Nの行列式 計算量O(N**3) ''' arr_calc = copy.deepcopy(arr) N = len(arr_calc) for i in range(N-1): d = arr_calc[i][i] for j in range(i+1,N): e = arr_calc[j][i]/d for k in range(i,N): arr_calc[j][k] -= e*arr_calc[i][k] #arr_calc 上△行列 det = 1 for i in range(N): det *= arr_calc[i][i] return det def invarr(self,arr): ''' 正方行列N*Nの逆行列 det == 0ならreturn False 計算量O(N**3) ''' arr_calc = copy.deepcopy(arr) if self.determinant(arr_calc) == 0: return False N = len(arr_calc) for i in range(N): v = [0]*(N) v[i] = 1 arr_calc[i].extend(v) for i in range(N-1): d = arr_calc[i][i] for j in range(i+1,N): e = arr_calc[j][i]/d for k in range(i,2*N): arr_calc[j][k] -= e*arr_calc[i][k] for i in range(N-1,-1,-1): d = arr_calc[i][i] for k in range(i,2*N): arr_calc[i][k] /= d for j in range(i-1,-1,-1): c = arr_calc[j][i] for k in range(i,2*N): arr_calc[j][k] -= c*arr_calc[i][k] inv = [[0]*(N) for i in range(N)] for i in range(N): for j in range(N): inv[i][j] = arr_calc[i][j+N] return inv def SimultaneousE(self,arr): ''' 3x+2y+z = 4 4x+5y+6z = 3 7x+8y+9z = 2 -> 3 2 1 4 4 5 6 3 7 8 9 2 ''' N = len(arr) arr1 = [[0]*(N) for i in range(N)] for i in range(N): for j in range(N): arr1[i][j] = arr[i][j] v = [[0] for i in range(N)] for i in range(N): v[i][0] = arr[i][-1] if self.determinant(arr1) == 0: return False inva = self.invarr(arr1) return self.multiplication(inva,v) def invmod(self,a):#mod逆元 if a == 0: return 0 if a == 1: return 1 return (-self.invmod(self.mod % a) * (self.mod // a)) % self.mod def multiplication_mod(self,arr1,arr2): H = len(arr1) W = len(arr2[0]) arr3 = [[0]*W for i in range(H)] for i in range(H): for j in range(W): val = 0 for k in range(len(arr1[0])): val += arr1[i][k]*arr2[k][j] arr3[i][j] = val%self.mod return arr3 def determinant_mod(self,arr): ''' 正方行列N*Nの行列式 計算量O(N**3) ''' arr_calc = copy.deepcopy(arr) N = len(arr_calc) for i in range(N-1): d = arr_calc[i][i] for j in range(i+1,N): e = arr_calc[j][i]*self.invmod(d) e %= self.mod for k in range(i,N): arr_calc[j][k] -= e*arr_calc[i][k] arr_calc[j][k] %= self.mod #arr_calc 上△行列 det = 1 for i in range(N): det *= arr_calc[i][i] det %= self.mod return det def invarr_mod(self,arr): ''' 正方行列N*Nの逆行列 det == 0ならreturn False 計算量O(N**3) ''' arr_calc = copy.deepcopy(arr) det = self.determinant_mod(arr_calc) if det == 0: return False N = len(arr_calc) for i in range(N): v = [0]*(N) v[i] = det arr_calc[i].extend(v) for i in range(N-1): d = arr_calc[i][i] for j in range(i+1,N): e = arr_calc[j][i]*self.invmod(d) for k in range(i,2*N): arr_calc[j][k] -= e*arr_calc[i][k] arr_calc[j][k] %= self.mod for i in range(N-1,-1,-1): d = arr_calc[i][i] for k in range(i,2*N): arr_calc[i][k] *= self.invmod(d) for j in range(i-1,-1,-1): c = arr_calc[j][i] for k in range(i,2*N): arr_calc[j][k] -= c*arr_calc[i][k] arr_calc[j][k] %= self.mod inv = [[0]*(N) for i in range(N)] for i in range(N): for j in range(N): inv[i][j] = arr_calc[i][j+N]*self.invmod(det)%self.mod return inv def SimultaneousE_mod(self,arr): ''' 3x+2y+z = 4 4x+5y+6z = 3 7x+8y+9z = 2 -> 3 2 1 4 4 5 6 3 7 8 9 2 ''' N = len(arr) arr1 = [[0]*(N) for i in range(N)] for i in range(N): for j in range(N): arr1[i][j] = arr[i][j] v = [[0] for i in range(N)] for i in range(N): v[i][0] = arr[i][-1] det = self.determinant_mod(arr1) if det == 0: return False inva = self.invarr_mod(arr1) v2 = self.multiplication_mod(inva,v) for i in range(N): v2[i][0] %= self.mod return v2 def modPow_matrix(self,arr,n): ''' N*Nの正方行列arrをn乗する。 ''' N = len(arr) if n==0: arr1 = [[0]*(N) for i in range(N)] for i in range(N): arr1[i][i] = 1 return arr1 if n==1: for i in range(N): for j in range(N): arr[i][j] %= self.mod return arr if n % 2 == 1: arr2 = self.multiplication_mod(arr,self.modPow_matrix(arr,n-1)) return arr2 arr3 = self.modPow_matrix(arr,n//2) return self.multiplication_mod(arr3,arr3) def Pow_matrix(self,arr,n): ''' N*Nの正方行列arrをn乗する。 ''' N = len(arr) if n==0: arr1 = [[0]*(N) for i in range(N)] for i in range(N): arr1[i][i] = 1 return arr1 if n==1: return arr if n % 2 == 1: arr2 = self.multiplication(arr,self.Pow_matrix(arr,n-1)) return arr2 arr3 = self.Pow_matrix(arr,n//2) return self.multiplication(arr3,arr3) R,C,T = map(int,input().split()) sx,sy = map(lambda x:int(x)-1,input().split()) gx,gy = map(lambda x:int(x)-1,input().split()) lsRC = [input() for i in range(R)] lsRC = lsRC[1:-1] lsRC = [i[1:-1] for i in lsRC] R -= 2 C -= 2 d = [[0]*C for i in range(R)] dxy = [(1,0),(0,1),(-1,0),(0,-1)] for i in range(R): for j in range(C): if lsRC[i][j] == '#': continue cnt = 0 for dx,dy in dxy: if 0<=i+dx<R and 0<=j+dy<C: if lsRC[i+dx][j+dy] == '.': cnt += 1 d[i][j] = cnt if d[sx][sy] == 0: if sx == gx and sy == gy: print(1) else: print(0) exit() matr = [[0]*(R*C) for i in range(R*C)] for i in range(R*C): x,y = i//C,i%C if lsRC[x][y] == '#': continue for dx,dy in dxy: if 0<=x+dx<R and 0<=y+dy<C: if lsRC[x+dx][y+dy] == '.': matr[(x+dx)*C+y+dy][i] = 1/d[x+dx][y+dy] MT = matrix() v = MT.Pow_matrix(matr, T) vec = [0]*(R*C) vec[sx*C+sy] = 1 vec = [vec] ans = MT.multiplication(vec, v)[0][gx*C+gy] print(ans)