結果
問題 |
No.1885 Flat Permutation
|
ユーザー |
![]() |
提出日時 | 2022-03-09 00:55:19 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 3,528 bytes |
コンパイル時間 | 2,309 ms |
コンパイル使用メモリ | 206,508 KB |
最終ジャッジ日時 | 2025-01-28 07:50:20 |
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 43 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #include <atcoder/modint> using namespace atcoder; using mint = modint998244353; template<class T, T(*e0)(), T(*e1)()> struct matrix : vector<vector<T>> { using vector<vector<T>>::vector; using vector<vector<T>>::operator=; matrix(int n, int m, T a = e0()) { (*this) = vector<vector<T>>(n, vector<T>(m, e0())); for (int i = 0; i < min(n, m); i++) { (*this)[i][i] = a; } } matrix operator-() const { int N = (*this).size(), M = (*this)[0].size(); matrix res(*this); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { res[i][j] = -res[i][j]; } } return res; } matrix &operator+=(const matrix &A) { int N = (*this).size(), M = (*this)[0].size(); assert(A.size() == N && A[0].size() == M); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { (*this)[i][j] += A[i][j]; } } return *this; } matrix &operator-=(const matrix &A) { return (*this) += -A; } matrix &operator*=(const T x) { int N = (*this).size(), M = (*this)[0].size(); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { (*this)[i][j] *= x; } } return *this; } matrix &operator/=(const T x) { int N = (*this).size(), M = (*this)[0].size(); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { (*this)[i][j] /= x; } } return *this; } friend matrix &operator*=(const T x, matrix &A) { return A *= x; } vector<T> operator*(const vector<T> &v) { int N = (*this).size(), M = (*this)[0].size(); assert(v.size() == M); vector<T> res(N, e0()); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { res[i] += (*this)[i][j] * v[j]; } } return res; } matrix operator*(const matrix &A) { int N = (*this).size(), M = (*this)[0].size(); assert(A.size() == M); int K = A[0].size(); matrix res(N, K, e0()); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { for (int k = 0; k < K; k++) { res[i][k] += (*this)[i][j] * A[j][k]; } } } return res; } matrix pow(ll k) { int N = (*this).size(), M = (*this)[0].size(); assert(N == M); matrix res(N, N, e1()), tmp(*this); while (k > 0) { if (k & 1) res *= tmp; tmp *= tmp; k >>= 1; } return res; } matrix operator+(const matrix &A) const { return matrix(*this) += A; } matrix operator-(const matrix &A) const { return matrix(*this) -= A; } matrix operator*(const T x) const { return matrix(*this) *= x; } matrix operator/(const T x) const { return matrix(*this) /= x; } friend matrix operator*(const T x, matrix &A) { return A *= x; } matrix &operator*=(const matrix &A) { return (*this) = (*this) * A; } }; // e0, e1 は加法, 乗法の単位元。問題によって書き換える template <class T> constexpr T e0() { return 0; } template <class T> constexpr T e1() { return 1; } int main() { int N, X, Y; cin >> N >> X >> Y; if (X > Y) swap(X, Y); if (X != 1) X++; if (Y != N) Y--; int D = Y - X; if (D < 0) { cout << 0 << endl; return 0; } vector<mint> ans = {1, 0, 0}; matrix<mint, e0, e1> A = {{1, 0, 1}, {1, 0, 0}, {0, 1, 0}}; ans = A.pow(D) * ans; cout << ans.at(0).val() << endl; }