結果

問題 No.1868 Teleporting Cyanmond
ユーザー H20
提出日時 2022-03-11 21:31:28
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 215 ms / 2,000 ms
コード長 2,753 bytes
コンパイル時間 179 ms
コンパイル使用メモリ 82,080 KB
実行使用メモリ 93,364 KB
最終ジャッジ日時 2024-09-16 01:37:44
合計ジャッジ時間 5,728 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

class segtree():
n=1
size=1
log=2
d=[0]
op=None
e=10**15
def __init__(self,V,OP,E):
self.n=len(V)
self.op=OP
self.e=E
self.log=(self.n-1).bit_length()
self.size=1<<self.log
self.d=[E for i in range(2*self.size)]
for i in range(self.n):
self.d[self.size+i]=V[i]
for i in range(self.size-1,0,-1):
self.update(i)
def set(self,p,x):
assert 0<=p and p<self.n
p+=self.size
self.d[p]=x
for i in range(1,self.log+1):
self.update(p>>i)
def get(self,p):
assert 0<=p and p<self.n
return self.d[p+self.size]
def prod(self,l,r):
assert 0<=l and l<=r and r<=self.n
sml=self.e
smr=self.e
l+=self.size
r+=self.size
while(l<r):
if (l&1):
sml=self.op(sml,self.d[l])
l+=1
if (r&1):
smr=self.op(self.d[r-1],smr)
r-=1
l>>=1
r>>=1
return self.op(sml,smr)
def all_prod(self):
return self.d[1]
def max_right(self,l,f):
assert 0<=l and l<=self.n
assert f(self.e)
if l==self.n:
return self.n
l+=self.size
sm=self.e
while(1):
while(l%2==0):
l>>=1
if not(f(self.op(sm,self.d[l]))):
while(l<self.size):
l=2*l
if f(self.op(sm,self.d[l])):
sm=self.op(sm,self.d[l])
l+=1
return l-self.size
sm=self.op(sm,self.d[l])
l+=1
if (l&-l)==l:
break
return self.n
def min_left(self,r,f):
assert 0<=r and r<self.n
assert f(self.e)
if r==0:
return 0
r+=self.size
sm=self.e
while(1):
r-=1
while(r>1 & (r%2)):
r>>=1
if not(f(self.op(self.d[r],sm))):
while(r<self.size):
r=(2*r+1)
if f(self.op(self.d[r],sm)):
sm=self.op(self.d[r],sm)
r-=1
return r+1-self.size
sm=self.op(self.d[r],sm)
if (r& -r)==r:
break
return 0
def update(self,k):
self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
def __str__(self):
return str([self.get(i) for i in range(self.n)])
N = int(input())
R = list(map(int, input().split()))
G = segtree([0]+[10**7]*N,min,10**7)
for i in range(N-1):
v = G.prod(i,N)
G.set(R[i]-1,min(G.get(R[i]-1),v+1))
print(G.get(N-1))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0