結果
問題 | No.1871 divisXor |
ユーザー | suisen |
提出日時 | 2022-03-11 21:48:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 26,501 bytes |
コンパイル時間 | 2,542 ms |
コンパイル使用メモリ | 216,696 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-22 12:55:12 |
合計ジャッジ時間 | 4,504 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,948 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 2 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,944 KB |
testcase_23 | AC | 2 ms
6,944 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,940 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,944 KB |
ソースコード
// #pragma comment(linker, "/stack:200000000") #include <bits/stdc++.h> #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; using ll = long long; using uint = unsigned int; using ull = unsigned long long; template <typename T> using vec = std::vector<T>; template <typename T> using vec2 = vec<vec <T>>; template <typename T> using vec3 = vec<vec2<T>>; template <typename T> using vec4 = vec<vec3<T>>; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <typename T, typename U> using umap = std::unordered_map<T, U>; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) (iterable).begin(), (iterable).end() #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! I/O utilities // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return out; } else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) { out << ' '; } return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head &head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U> &a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return in; } else { return operator>><N + 1>(in >> std::get<N>(a), a); } } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { ( std::cin >> ... >> args ); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcountll(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } struct all_subset { struct all_subset_iter { const int s; int t; constexpr all_subset_iter(int s) : s(s), t(s + 1) {} constexpr auto operator*() const { return t; } constexpr auto operator++() {} constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; } }; int s; constexpr all_subset(int s) : s(s) {} constexpr auto begin() { return all_subset_iter(s); } constexpr auto end() { return nullptr; } }; // ! container template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Iterable> auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr> auto generate_vector(int n, Gen generator) { std::vector<T> v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template <typename T> auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template <typename T> auto generate_range_vector(T n) { return generate_range_vector(0, n); } template <typename T> void sort_unique_erase(std::vector<T> &a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){ foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T &x, const T &y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T &x, const T &y) { if (y <= x) return false; x = y; return true; } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <cmath> #include <iostream> #include <random> #include <numeric> #include <cassert> #include <cstdint> #include <iterator> namespace suisen::miller_rabin { namespace internal { constexpr uint32_t THRESHOLD_1 = 341531U; constexpr uint64_t BASE_1[] { 9345883071009581737ULL }; constexpr uint32_t THRESHOLD_2 = 1050535501U; constexpr uint64_t BASE_2[] { 336781006125ULL, 9639812373923155ULL }; constexpr uint64_t THRESHOLD_3 = 350269456337ULL; constexpr uint64_t BASE_3[] { 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL }; constexpr uint64_t THRESHOLD_4 = 55245642489451ULL; constexpr uint64_t BASE_4[] { 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL }; constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL; constexpr uint64_t BASE_5[] { 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL }; constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL; constexpr uint64_t BASE_6[] { 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL, 1263739024124850375ULL }; constexpr uint32_t BASE_7[] { 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U }; template <auto BASE, std::size_t SIZE, typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> bool miller_rabin(T _n) { using U = std::make_unsigned_t<T>; using M = safely_multipliable_t<U>; U n = _n, d = (n - 1) >> __builtin_ctzll(n - 1); if (n == 2 or n == 3 or n == 5 or n == 7) return true; if (n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false; for (std::size_t i = 0; i < SIZE; ++i) { M y = 1, p = BASE[i] % n; if (p == 0) continue; for (U d2 = d; d2; d2 >>= 1) { if (d2 & 1) y = y * p % n; p = p * p % n; } if (y == 1) continue; for (U t = d; y != n - 1; t <<= 1) { y = y * y % n; if (y == 1 or t == n - 1) return false; } } return true; } } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> bool is_prime(T n) { if (n <= 1) return false; using namespace internal; if (n < THRESHOLD_1) { return miller_rabin<BASE_1, 1>(n); } else if (n < THRESHOLD_2) { return miller_rabin<BASE_2, 2>(n); } else if (n < THRESHOLD_3) { return miller_rabin<BASE_3, 3>(n); } else if (n < THRESHOLD_4) { return miller_rabin<BASE_4, 4>(n); } else if (n < THRESHOLD_5) { return miller_rabin<BASE_5, 5>(n); } else if (n < THRESHOLD_6) { return miller_rabin<BASE_6, 6>(n); } else { return miller_rabin<BASE_7, 7>(n); } } } // namespace suisen::miller_rabin namespace suisen::fast_factorize { namespace internal { template <typename T> int floor_log2(T n) { int i = 0; while (n) n >>= 1, ++i; return i - 1; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> T pollard_rho(T n) { using M = safely_multipliable_t<T>; const T m = T(1) << (floor_log2(n) / 5); static std::mt19937_64 rng{std::random_device{}()}; std::uniform_int_distribution<T> dist(0, n - 1); while (true) { T c = dist(rng); auto f = [&](T x) -> T { return (M(x) * x + c) % n; }; T x, y = 2, ys, q = 1, g = 1; for (T r = 1; g == 1; r <<= 1) { x = y; for (T i = 0; i < r; ++i) y = f(y); for (T k = 0; k < r and g == 1; k += m) { ys = y; for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n; g = std::gcd(q, n); } } if (g == n) { g = 1; while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n); } if (g < n) { if (miller_rabin::is_prime(g)) return g; if (T d = n / g; miller_rabin::is_prime(d)) return d; return pollard_rho(g); } } } } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<std::pair<T, int>> factorize(T n) { std::vector<std::pair<T, int>> res; if ((n & 1) == 0) { int q = 0; do ++q, n >>= 1; while ((n & 1) == 0); res.emplace_back(2, q); } for (T p = 3; p * p <= n; p += 2) { if (p >= 101 and n >= 1 << 20) { while (n > 1) { if (miller_rabin::is_prime(n)) { res.emplace_back(std::exchange(n, 1), 1); } else { p = internal::pollard_rho(n); int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } break; } if (n % p == 0) { int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } if (n > 1) res.emplace_back(n, 1); return res; } } // namespace suisen::fast_factorize #include <algorithm> #include <array> #include <optional> #include <tuple> #include <vector> namespace suisen { // // Returns pow(-1, n) // template <typename T> // constexpr inline int pow_m1(T n) { // return -(n & 1) | 1; // } // // Returns pow(-1, n) // template <> // constexpr inline int pow_m1<bool>(bool n) { // return -int(n) | 1; // } // // Returns floor(x / y) // template <typename T> // constexpr inline T fld(const T x, const T y) { // return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; // } // // Returns ceil(x / y) // template <typename T> // constexpr inline T cld(const T x, const T y) { // return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; // } /** * O(sqrt(n)) * Returns a vector of { prime, index }. * It is guaranteed that `prime` is ascending. */ template <typename T> std::vector<std::pair<T, int>> factorize(T n) { static constexpr std::array primes{ 2, 3, 5, 7, 11, 13 }; static constexpr int next_prime = 17; static constexpr int siz = std::array{ 1, 2, 8, 48, 480, 5760, 92160 } [primes.size() - 1] ; static constexpr int period = [] { int res = 1; for (auto e : primes) res *= e; return res; }(); static constexpr struct S : public std::array<int, siz> { constexpr S() { for (int i = next_prime, j = 0; i < period + next_prime; i += 2) { bool ok = true; for (int p : primes) ok &= i % p > 0; if (ok) (*this)[j++] = i - next_prime; } } } s{}; assert(n > 0); std::vector<std::pair<T, int>> res; auto f = [&res, &n](int p) { if (n % p) return; int cnt = 0; do n /= p, ++cnt; while (n % p == 0); res.emplace_back(p, cnt); }; for (int p : primes) f(p); for (T b = next_prime; b * b <= n; b += period) { for (int offset : s) f(b + offset); } if (n != 1) res.emplace_back(n, 1); return res; } /** * O(sigma(n)) * Returns a vector that contains all divisors of `n`. * It is NOT guaranteed that the vector is sorted. */ template <typename T> std::vector<T> divisors(const std::vector<std::pair<T, int>>& factorized) { std::vector<T> res{ 1 }; for (auto [p, c] : factorized) { for (int i = 0, sz = res.size(); i < sz; ++i) { T d = res[i]; for (int j = 0; j < c; ++j) res.push_back(d *= p); } } return res; } /** * O(sqrt(n)) * Returns a vector that contains all divisors of `n`. * It is NOT guaranteed that the vector is sorted. */ template <typename T, constraints_t<std::is_integral<T>> = nullptr> std::vector<T> divisors(T n) { return divisors(factorize(n)); } template <typename T> T totient(T n) { for (const auto& [p, _] : factorize(n)) n /= p, n *= p - 1; return n; } // Returns { l, r } := min_max { x>0 | fld(n,x)=q }. template <typename T, constraints_t<std::is_integral<T>> = nullptr> std::optional<std::pair<T, T>> same_fld_denominators_positive(T n, T q, T max_val = std::numeric_limits<T>::max()) { T l, r; if (q >= 0) { if (n < 0) return std::nullopt; // cld(n + 1, q + 1) <= x <= fld(n, q) l = (n + 1 + q) / (q + 1), r = q == 0 ? max_val : std::min(max_val, n / q); } else { if (n >= 0) return std::nullopt; // cld(n, q) <= x <= fld(n + 1, q + 1) l = (n + q + 1) / q, r = q == -1 ? max_val : std::min(max_val, (n + 1) / (q + 1)); } if (l <= r) return std::make_pair(l, r); else return std::nullopt; } // Returns { l, r } := min_max { x<0 | fld(n,x)=q }. template <typename T, constraints_t<std::is_integral<T>> = nullptr> std::optional<std::pair<T, T>> same_fld_denominators_negative(T n, T q, T min_val = std::numeric_limits<T>::min()) { T l, r; if (q >= 0) { if (n > 0) return std::nullopt; // cld(n, q) <= x <= fld(n - 1, q + 1) l = q == 0 ? min_val : std::max(min_val, n / q), r = (n - 1 - q) / (q + 1); } else { if (n <= 0) return std::nullopt; // cld(n - 1, q + 1) <= x <= fld(n, q) l = q == -1 ? min_val : std::max(min_val, (n - 1) / (q + 1)), r = (n - q - 1) / q; } if (l <= r) return std::make_pair(l, r); else return std::nullopt; } // Returns { l, r } := min_max { x>0 | cld(n,x)=q }. template <typename T, constraints_t<std::is_integral<T>> = nullptr> std::optional<std::pair<T, T>> same_cld_denominators_positive(T n, T q, T max_val = std::numeric_limits<T>::max()) { T l, r; if (q > 0) { if (n <= 0) return std::nullopt; l = (n + q - 1) / q, r = q == 1 ? max_val : std::min(max_val, (n - 1) / (q - 1)); } else { if (n > 0) return std::nullopt; l = (n - 1 + q) / (q - 1), r = q == 0 ? max_val : std::min(max_val, n / q); } if (l <= r) return std::make_pair(l, r); else return std::nullopt; } // Returns { l, r } := min_max { x<0 | cld(n,x)=q }. template <typename T, constraints_t<std::is_integral<T>> = nullptr> std::optional<std::pair<T, T>> same_cld_denominators_negative(T n, T q, T min_val = std::numeric_limits<T>::min()) { T l, r; if (q > 0) { if (n >= 0) return std::nullopt; l = q == 1 ? min_val : std::max(min_val, (n + 1) / (q - 1)), r = (n - q + 1) / q; } else { if (n < 0) return std::nullopt; l = q == 0 ? min_val : std::max(min_val, n / q), r = (n + 1 - q) / (q - 1); } if (l <= r) return std::make_pair(l, r); else return std::nullopt; } /** * O(sqrt(n)). * Returns vector of { l : T, r : T, q : T } s.t. let S be { d | n / d = q }, l = min S and r = max S. * It is guaranteed that `l`, `r` is ascending (i.e. `q` is descending). */ template <typename T, constraints_t<std::is_integral<T>> = nullptr> auto enumerate_quotients(T n) { assert(0 <= n); std::vector<std::tuple<T, T, T>> res; for (T l = 1, r = 1; l <= n; l = r + 1) { T q = n / l; res.emplace_back(l, r = n / q, q); } return res; } /** * Template Parameter: * - vector<T> or array<T, N> * * Time Complexity: O(|vs| * Sum_{v in vs} sqrt(v)) * * Returns vector of { l : T, r : T, qs : Container } s.t. let S be { d | vs[i] / d = qs[i] (for all i) }, l = min S and r = max S * It is guaranteed that `l`, `r` is ascending (i.e. for all `i`, `q[i]` is descending). */ template <typename Container> std::vector<std::tuple<typename Container::value_type, typename Container::value_type, Container>> enumerate_multiple_quotients(const Container& vs) { using T = typename Container::value_type; static_assert(std::is_integral_v<T>); int n = vs.size(); T max_val = *std::max_element(vs.begin(), vs.end()); assert(*std::min_element(vs.begin(), vs.end()) >= 0); std::vector<std::tuple<T, T, Container>> res; for (T l = 1, r = 1; l <= max_val; l = r + 1) { Container qs; if constexpr (std::is_same_v<Container, std::vector<T>>) qs.resize(n); r = std::numeric_limits<T>::max(); for (int i = 0; i < n; ++i) { qs[i] = vs[i] / l; r = std::min(r, qs[i] == 0 ? std::numeric_limits<T>::max() : vs[i] / qs[i]); } res.emplace_back(l, r, std::move(qs)); } return res; } } // namespace suisen int main() { input(long long, n); if (n == 0) { print(-1); return 0; } vector<long long> ans; vector<long long> fs; while (n) { long long x = n; while (true) { if (x == 0) { print(ans); print(n); return 0; } long long div_sum = 1; for (auto [p, c] : fast_factorize::factorize(x)) { long long s = 0, q = 1; loop(c + 1) { s += q; q *= p; } div_sum *= s; } long long n2 = n ^ div_sum; if (2 * n2 <= n) { ans.push_back(x); fs.push_back(div_sum); n = n2; break; } --x; } } print(ans.size()); print(ans); // print(fs); return 0; }