結果
問題 | No.1871 divisXor |
ユーザー |
|
提出日時 | 2022-03-11 21:48:12 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 29 ms / 2,000 ms |
コード長 | 26,501 bytes |
コンパイル時間 | 2,568 ms |
コンパイル使用メモリ | 210,832 KB |
最終ジャッジ日時 | 2025-01-28 08:30:12 |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 29 |
ソースコード
// #pragma comment(linker, "/stack:200000000")#include <bits/stdc++.h>#include <limits>#include <type_traits>namespace suisen {// ! utilitytemplate <typename ...Types>using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;template <bool cond_v, typename Then, typename OrElse>constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {if constexpr (cond_v) {return std::forward<Then>(then);} else {return std::forward<OrElse>(or_else);}}// ! functiontemplate <typename ReturnType, typename Callable, typename ...Args>using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;template <typename F, typename T>using is_uni_op = is_same_as_invoke_result<T, F, T>;template <typename F, typename T>using is_bin_op = is_same_as_invoke_result<T, F, T, T>;template <typename Comparator, typename T>using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;// ! integraltemplate <typename T, typename = constraints_t<std::is_integral<T>>>constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;template <typename T, unsigned int n>struct is_nbit { static constexpr bool value = bit_num<T> == n; };template <typename T, unsigned int n>static constexpr bool is_nbit_v = is_nbit<T, n>::value;// ?template <typename T>struct safely_multipliable {};template <>struct safely_multipliable<int> { using type = long long; };template <>struct safely_multipliable<long long> { using type = __int128_t; };template <>struct safely_multipliable<unsigned int> { using type = unsigned long long; };template <>struct safely_multipliable<unsigned long long> { using type = __uint128_t; };template <>struct safely_multipliable<float> { using type = float; };template <>struct safely_multipliable<double> { using type = double; };template <>struct safely_multipliable<long double> { using type = long double; };template <typename T>using safely_multipliable_t = typename safely_multipliable<T>::type;} // namespace suisen// ! type aliasesusing i128 = __int128_t;using u128 = __uint128_t;using ll = long long;using uint = unsigned int;using ull = unsigned long long;template <typename T> using vec = std::vector<T>;template <typename T> using vec2 = vec<vec <T>>;template <typename T> using vec3 = vec<vec2<T>>;template <typename T> using vec4 = vec<vec3<T>>;template <typename T>using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;template <typename T, typename U>using umap = std::unordered_map<T, U>;// ! macros (capital: internal macro)#define OVERLOAD2(_1,_2,name,...) name#define OVERLOAD3(_1,_2,_3,name,...) name#define OVERLOAD4(_1,_2,_3,_4,name,...) name#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))#define REP3(i,l,r) REP4(i,l,r,1)#define REP2(i,n) REP3(i,0,n)#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))#define REPINF2(i,l) REPINF3(i,l,1)#define REPINF1(i) REPINF2(i,0)#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))#define RREP3(i,l,r) RREP4(i,l,r,1)#define RREP2(i,n) RREP3(i,0,n)#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)#define CAT_I(a, b) a##b#define CAT(a, b) CAT_I(a, b)#define UNIQVAR(tag) CAT(tag, __LINE__)#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)#define all(iterable) (iterable).begin(), (iterable).end()#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)// ! I/O utilities// pairtemplate <typename T, typename U>std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {return out << a.first << ' ' << a.second;}// tupletemplate <unsigned int N = 0, typename ...Args>std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {return out;} else {out << std::get<N>(a);if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {out << ' ';}return operator<<<N + 1>(out, a);}}// vectortemplate <typename T>std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {for (auto it = a.begin(); it != a.end();) {out << *it;if (++it != a.end()) out << ' ';}return out;}// arraytemplate <typename T, size_t N>std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {for (auto it = a.begin(); it != a.end();) {out << *it;if (++it != a.end()) out << ' ';}return out;}inline void print() { std::cout << '\n'; }template <typename Head, typename... Tail>inline void print(const Head &head, const Tail &...tails) {std::cout << head;if (sizeof...(tails)) std::cout << ' ';print(tails...);}template <typename Iterable>auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {for (auto it = v.begin(); it != v.end();) {std::cout << *it;if (++it != v.end()) std::cout << sep;}std::cout << end;}// pairtemplate <typename T, typename U>std::istream& operator>>(std::istream& in, std::pair<T, U> &a) {return in >> a.first >> a.second;}// tupletemplate <unsigned int N = 0, typename ...Args>std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {return in;} else {return operator>><N + 1>(in >> std::get<N>(a), a);}}// vectortemplate <typename T>std::istream& operator>>(std::istream& in, std::vector<T> &a) {for (auto it = a.begin(); it != a.end(); ++it) in >> *it;return in;}// arraytemplate <typename T, size_t N>std::istream& operator>>(std::istream& in, std::array<T, N> &a) {for (auto it = a.begin(); it != a.end(); ++it) in >> *it;return in;}template <typename ...Args>void read(Args &...args) {( std::cin >> ... >> args );}// ! integral utilities// Returns pow(-1, n)template <typename T>constexpr inline int pow_m1(T n) {return -(n & 1) | 1;}// Returns pow(-1, n)template <>constexpr inline int pow_m1<bool>(bool n) {return -int(n) | 1;}// Returns floor(x / y)template <typename T>constexpr inline T fld(const T x, const T y) {return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;}template <typename T>constexpr inline T cld(const T x, const T y) {return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;}template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>constexpr inline int popcount(const T x) { return __builtin_popcount(x); }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>constexpr inline int popcount(const T x) { return __builtin_popcount(x); }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>constexpr inline int popcount(const T x) { return __builtin_popcountll(x); }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }template <typename T>constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }template <typename T>constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }template <typename T>constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }template <typename T>constexpr inline int parity(const T x) { return popcount(x) & 1; }struct all_subset {struct all_subset_iter {const int s; int t;constexpr all_subset_iter(int s) : s(s), t(s + 1) {}constexpr auto operator*() const { return t; }constexpr auto operator++() {}constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }};int s;constexpr all_subset(int s) : s(s) {}constexpr auto begin() { return all_subset_iter(s); }constexpr auto end() { return nullptr; }};// ! containertemplate <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>auto priqueue_comp(const Comparator comparator) {return std::priority_queue<T, std::vector<T>, Comparator>(comparator);}template <typename Iterable>auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {return iterable.size();}template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>auto generate_vector(int n, Gen generator) {std::vector<T> v(n);for (int i = 0; i < n; ++i) v[i] = generator(i);return v;}template <typename T>auto generate_range_vector(T l, T r) {return generate_vector(r - l, [l](int i) { return l + i; });}template <typename T>auto generate_range_vector(T n) {return generate_range_vector(0, n);}template <typename T>void sort_unique_erase(std::vector<T> &a) {std::sort(a.begin(), a.end());a.erase(std::unique(a.begin(), a.end()), a.end());}template <typename InputIterator, typename BiConsumer>auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);}template <typename Container, typename BiConsumer>auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){foreach_adjacent_values(c.begin(), c.end(), f);}// ! other utilities// x <- min(x, y). returns true iff `x` has chenged.template <typename T>inline bool chmin(T &x, const T &y) {if (y >= x) return false;x = y;return true;}// x <- max(x, y). returns true iff `x` has chenged.template <typename T>inline bool chmax(T &x, const T &y) {if (y <= x) return false;x = y;return true;}namespace suisen {}using namespace suisen;using namespace std;struct io_setup {io_setup(int precision = 20) {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout << std::fixed << std::setprecision(precision);}} io_setup_ {};// ! code from here#include <cmath>#include <iostream>#include <random>#include <numeric>#include <cassert>#include <cstdint>#include <iterator>namespace suisen::miller_rabin {namespace internal {constexpr uint32_t THRESHOLD_1 = 341531U;constexpr uint64_t BASE_1[] { 9345883071009581737ULL };constexpr uint32_t THRESHOLD_2 = 1050535501U;constexpr uint64_t BASE_2[] { 336781006125ULL, 9639812373923155ULL };constexpr uint64_t THRESHOLD_3 = 350269456337ULL;constexpr uint64_t BASE_3[] { 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL };constexpr uint64_t THRESHOLD_4 = 55245642489451ULL;constexpr uint64_t BASE_4[] { 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL };constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL;constexpr uint64_t BASE_5[] { 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL };constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL;constexpr uint64_t BASE_6[] { 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL,1263739024124850375ULL };constexpr uint32_t BASE_7[] { 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U };template <auto BASE, std::size_t SIZE, typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>bool miller_rabin(T _n) {using U = std::make_unsigned_t<T>;using M = safely_multipliable_t<U>;U n = _n, d = (n - 1) >> __builtin_ctzll(n - 1);if (n == 2 or n == 3 or n == 5 or n == 7) return true;if (n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false;for (std::size_t i = 0; i < SIZE; ++i) {M y = 1, p = BASE[i] % n;if (p == 0) continue;for (U d2 = d; d2; d2 >>= 1) {if (d2 & 1) y = y * p % n;p = p * p % n;}if (y == 1) continue;for (U t = d; y != n - 1; t <<= 1) {y = y * y % n;if (y == 1 or t == n - 1) return false;}}return true;}}template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>bool is_prime(T n) {if (n <= 1) return false;using namespace internal;if (n < THRESHOLD_1) {return miller_rabin<BASE_1, 1>(n);} else if (n < THRESHOLD_2) {return miller_rabin<BASE_2, 2>(n);} else if (n < THRESHOLD_3) {return miller_rabin<BASE_3, 3>(n);} else if (n < THRESHOLD_4) {return miller_rabin<BASE_4, 4>(n);} else if (n < THRESHOLD_5) {return miller_rabin<BASE_5, 5>(n);} else if (n < THRESHOLD_6) {return miller_rabin<BASE_6, 6>(n);} else {return miller_rabin<BASE_7, 7>(n);}}} // namespace suisen::miller_rabinnamespace suisen::fast_factorize {namespace internal {template <typename T>int floor_log2(T n) {int i = 0;while (n) n >>= 1, ++i;return i - 1;}template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>T pollard_rho(T n) {using M = safely_multipliable_t<T>;const T m = T(1) << (floor_log2(n) / 5);static std::mt19937_64 rng{std::random_device{}()};std::uniform_int_distribution<T> dist(0, n - 1);while (true) {T c = dist(rng);auto f = [&](T x) -> T { return (M(x) * x + c) % n; };T x, y = 2, ys, q = 1, g = 1;for (T r = 1; g == 1; r <<= 1) {x = y;for (T i = 0; i < r; ++i) y = f(y);for (T k = 0; k < r and g == 1; k += m) {ys = y;for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n;g = std::gcd(q, n);}}if (g == n) {g = 1;while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n);}if (g < n) {if (miller_rabin::is_prime(g)) return g;if (T d = n / g; miller_rabin::is_prime(d)) return d;return pollard_rho(g);}}}}template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>std::vector<std::pair<T, int>> factorize(T n) {std::vector<std::pair<T, int>> res;if ((n & 1) == 0) {int q = 0;do ++q, n >>= 1; while ((n & 1) == 0);res.emplace_back(2, q);}for (T p = 3; p * p <= n; p += 2) {if (p >= 101 and n >= 1 << 20) {while (n > 1) {if (miller_rabin::is_prime(n)) {res.emplace_back(std::exchange(n, 1), 1);} else {p = internal::pollard_rho(n);int q = 0;do ++q, n /= p; while (n % p == 0);res.emplace_back(p, q);}}break;}if (n % p == 0) {int q = 0;do ++q, n /= p; while (n % p == 0);res.emplace_back(p, q);}}if (n > 1) res.emplace_back(n, 1);return res;}} // namespace suisen::fast_factorize#include <algorithm>#include <array>#include <optional>#include <tuple>#include <vector>namespace suisen {// // Returns pow(-1, n)// template <typename T>// constexpr inline int pow_m1(T n) {// return -(n & 1) | 1;// }// // Returns pow(-1, n)// template <>// constexpr inline int pow_m1<bool>(bool n) {// return -int(n) | 1;// }// // Returns floor(x / y)// template <typename T>// constexpr inline T fld(const T x, const T y) {// return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;// }// // Returns ceil(x / y)// template <typename T>// constexpr inline T cld(const T x, const T y) {// return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;// }/*** O(sqrt(n))* Returns a vector of { prime, index }.* It is guaranteed that `prime` is ascending.*/template <typename T>std::vector<std::pair<T, int>> factorize(T n) {static constexpr std::array primes{ 2, 3, 5, 7, 11, 13 };static constexpr int next_prime = 17;static constexpr int siz = std::array{ 1, 2, 8, 48, 480, 5760, 92160 } [primes.size() - 1] ;static constexpr int period = [] {int res = 1;for (auto e : primes) res *= e;return res;}();static constexpr struct S : public std::array<int, siz> {constexpr S() {for (int i = next_prime, j = 0; i < period + next_prime; i += 2) {bool ok = true;for (int p : primes) ok &= i % p > 0;if (ok) (*this)[j++] = i - next_prime;}}} s{};assert(n > 0);std::vector<std::pair<T, int>> res;auto f = [&res, &n](int p) {if (n % p) return;int cnt = 0;do n /= p, ++cnt; while (n % p == 0);res.emplace_back(p, cnt);};for (int p : primes) f(p);for (T b = next_prime; b * b <= n; b += period) {for (int offset : s) f(b + offset);}if (n != 1) res.emplace_back(n, 1);return res;}/*** O(sigma(n))* Returns a vector that contains all divisors of `n`.* It is NOT guaranteed that the vector is sorted.*/template <typename T>std::vector<T> divisors(const std::vector<std::pair<T, int>>& factorized) {std::vector<T> res{ 1 };for (auto [p, c] : factorized) {for (int i = 0, sz = res.size(); i < sz; ++i) {T d = res[i];for (int j = 0; j < c; ++j) res.push_back(d *= p);}}return res;}/*** O(sqrt(n))* Returns a vector that contains all divisors of `n`.* It is NOT guaranteed that the vector is sorted.*/template <typename T, constraints_t<std::is_integral<T>> = nullptr>std::vector<T> divisors(T n) {return divisors(factorize(n));}template <typename T>T totient(T n) {for (const auto& [p, _] : factorize(n)) n /= p, n *= p - 1;return n;}// Returns { l, r } := min_max { x>0 | fld(n,x)=q }.template <typename T, constraints_t<std::is_integral<T>> = nullptr>std::optional<std::pair<T, T>> same_fld_denominators_positive(T n, T q, T max_val = std::numeric_limits<T>::max()) {T l, r;if (q >= 0) {if (n < 0) return std::nullopt;// cld(n + 1, q + 1) <= x <= fld(n, q)l = (n + 1 + q) / (q + 1), r = q == 0 ? max_val : std::min(max_val, n / q);} else {if (n >= 0) return std::nullopt;// cld(n, q) <= x <= fld(n + 1, q + 1)l = (n + q + 1) / q, r = q == -1 ? max_val : std::min(max_val, (n + 1) / (q + 1));}if (l <= r) return std::make_pair(l, r);else return std::nullopt;}// Returns { l, r } := min_max { x<0 | fld(n,x)=q }.template <typename T, constraints_t<std::is_integral<T>> = nullptr>std::optional<std::pair<T, T>> same_fld_denominators_negative(T n, T q, T min_val = std::numeric_limits<T>::min()) {T l, r;if (q >= 0) {if (n > 0) return std::nullopt;// cld(n, q) <= x <= fld(n - 1, q + 1)l = q == 0 ? min_val : std::max(min_val, n / q), r = (n - 1 - q) / (q + 1);} else {if (n <= 0) return std::nullopt;// cld(n - 1, q + 1) <= x <= fld(n, q)l = q == -1 ? min_val : std::max(min_val, (n - 1) / (q + 1)), r = (n - q - 1) / q;}if (l <= r) return std::make_pair(l, r);else return std::nullopt;}// Returns { l, r } := min_max { x>0 | cld(n,x)=q }.template <typename T, constraints_t<std::is_integral<T>> = nullptr>std::optional<std::pair<T, T>> same_cld_denominators_positive(T n, T q, T max_val = std::numeric_limits<T>::max()) {T l, r;if (q > 0) {if (n <= 0) return std::nullopt;l = (n + q - 1) / q, r = q == 1 ? max_val : std::min(max_val, (n - 1) / (q - 1));} else {if (n > 0) return std::nullopt;l = (n - 1 + q) / (q - 1), r = q == 0 ? max_val : std::min(max_val, n / q);}if (l <= r) return std::make_pair(l, r);else return std::nullopt;}// Returns { l, r } := min_max { x<0 | cld(n,x)=q }.template <typename T, constraints_t<std::is_integral<T>> = nullptr>std::optional<std::pair<T, T>> same_cld_denominators_negative(T n, T q, T min_val = std::numeric_limits<T>::min()) {T l, r;if (q > 0) {if (n >= 0) return std::nullopt;l = q == 1 ? min_val : std::max(min_val, (n + 1) / (q - 1)), r = (n - q + 1) / q;} else {if (n < 0) return std::nullopt;l = q == 0 ? min_val : std::max(min_val, n / q), r = (n + 1 - q) / (q - 1);}if (l <= r) return std::make_pair(l, r);else return std::nullopt;}/*** O(sqrt(n)).* Returns vector of { l : T, r : T, q : T } s.t. let S be { d | n / d = q }, l = min S and r = max S.* It is guaranteed that `l`, `r` is ascending (i.e. `q` is descending).*/template <typename T, constraints_t<std::is_integral<T>> = nullptr>auto enumerate_quotients(T n) {assert(0 <= n);std::vector<std::tuple<T, T, T>> res;for (T l = 1, r = 1; l <= n; l = r + 1) {T q = n / l;res.emplace_back(l, r = n / q, q);}return res;}/*** Template Parameter:* - vector<T> or array<T, N>** Time Complexity: O(|vs| * Sum_{v in vs} sqrt(v))** Returns vector of { l : T, r : T, qs : Container } s.t. let S be { d | vs[i] / d = qs[i] (for all i) }, l = min S and r = max S* It is guaranteed that `l`, `r` is ascending (i.e. for all `i`, `q[i]` is descending).*/template <typename Container>std::vector<std::tuple<typename Container::value_type, typename Container::value_type, Container>>enumerate_multiple_quotients(const Container& vs) {using T = typename Container::value_type;static_assert(std::is_integral_v<T>);int n = vs.size();T max_val = *std::max_element(vs.begin(), vs.end());assert(*std::min_element(vs.begin(), vs.end()) >= 0);std::vector<std::tuple<T, T, Container>> res;for (T l = 1, r = 1; l <= max_val; l = r + 1) {Container qs;if constexpr (std::is_same_v<Container, std::vector<T>>) qs.resize(n);r = std::numeric_limits<T>::max();for (int i = 0; i < n; ++i) {qs[i] = vs[i] / l;r = std::min(r, qs[i] == 0 ? std::numeric_limits<T>::max() : vs[i] / qs[i]);}res.emplace_back(l, r, std::move(qs));}return res;}} // namespace suisenint main() {input(long long, n);if (n == 0) {print(-1);return 0;}vector<long long> ans;vector<long long> fs;while (n) {long long x = n;while (true) {if (x == 0) {print(ans);print(n);return 0;}long long div_sum = 1;for (auto [p, c] : fast_factorize::factorize(x)) {long long s = 0, q = 1;loop(c + 1) {s += q;q *= p;}div_sum *= s;}long long n2 = n ^ div_sum;if (2 * n2 <= n) {ans.push_back(x);fs.push_back(div_sum);n = n2;break;}--x;}}print(ans.size());print(ans);// print(fs);return 0;}