結果
問題 | No.1870 Xor Matrix |
ユーザー | rogi52 |
提出日時 | 2022-03-11 22:12:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,428 bytes |
コンパイル時間 | 2,107 ms |
コンパイル使用メモリ | 205,344 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 02:28:56 |
合計ジャッジ時間 | 3,657 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | WA | - |
testcase_04 | AC | 29 ms
5,376 KB |
testcase_05 | AC | 18 ms
5,376 KB |
testcase_06 | AC | 22 ms
5,376 KB |
testcase_07 | AC | 26 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | AC | 16 ms
5,376 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 28 ms
5,376 KB |
testcase_13 | AC | 15 ms
5,376 KB |
testcase_14 | AC | 29 ms
5,376 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 31 ms
5,376 KB |
testcase_18 | WA | - |
testcase_19 | AC | 26 ms
5,376 KB |
testcase_20 | AC | 19 ms
5,376 KB |
testcase_21 | AC | 12 ms
5,376 KB |
testcase_22 | WA | - |
ソースコード
#include <bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); i++) using namespace std; typedef long long ll; const int MAX_ROW = 310; const int MAX_COL = 310; struct BitMatrix { int H,W; bitset< MAX_COL > val[MAX_ROW]; BitMatrix(int m = 1, int n = 1) : H(m), W(n) {} inline bitset< MAX_COL > & operator[] (int i) { return val[i]; } }; int Gauss_Jordan(BitMatrix &A, bool is_extended = false) { int rank = 0; for(int col = 0; col < A.W; ++col) { if(is_extended && col == A.W - 1) break; int pivot = -1; for(int row = rank; row < A.H; ++row) { if(A[row][col]) { pivot = row; break; } } if(pivot == -1) continue; swap(A[pivot], A[rank]); for(int row = 0; row < A.H; ++row) { if(row != rank && A[row][col]) A[row] ^= A[rank]; } ++rank; } return rank; } // Ax = b int Linear_Equation(BitMatrix A, vector<int> &x, vector<int> b) { int m = A.H, n = A.W; BitMatrix M(m, n + 1); for(int i = 0; i < m; ++i) { for(int j = 0; j < n; ++j) M[i][j] = A[i][j]; M[i][n] = b[i]; } int rank = Gauss_Jordan(M, true); for(int row = rank; row < m; ++row) if(M[row][n]) return -1; x.assign(n, 0); for(int i = 0; i < rank; ++i) x[i] = M[i][n]; return rank; // #(solution) = 2^{n - rank} } template< int mod > struct Fp { int x; Fp() : x(0) {} Fp(int64_t y) : x(y >= 0 ? y % mod : (mod + y % mod) % mod) {} Fp &operator+=(const Fp &p) { if((x += p.x) >= mod) x -= mod; return *this; } Fp &operator-=(const Fp &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } Fp &operator*=(const Fp &p) { x = (int)(1LL * x * p.x % mod); return *this; } Fp &operator/=(const Fp &p) { *this *= p.inv(); return *this; } Fp operator-() const { return Fp(-x); } Fp operator+(const Fp &p) const { return Fp(*this) += p; } Fp operator-(const Fp &p) const { return Fp(*this) -= p; } Fp operator*(const Fp &p) const { return Fp(*this) *= p; } Fp operator/(const Fp &p) const { return Fp(*this) /= p; } bool operator==(const Fp &p) const { return x == p.x; } bool operator!=(const Fp &p) const { return x != p.x; } Fp inv() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Fp(u); } Fp pow(int64_t n) const { Fp ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Fp &p) { return os << p.x; } friend istream &operator>>(istream &is, Fp &a) { int64_t t; is >> t; a = Fp< mod > (t); return (is); } static int get_mod() { return mod; } }; using mint = Fp<998244353>; int main(){ cin.tie(0); ios::sync_with_stdio(0); int N,M; cin >> N >> M; vector<int> A(N), B(M); rep(i,N) cin >> A[i]; rep(i,M) cin >> B[i]; mint ans = 1; mint p2 = mint(2).pow((N - 1) * (M - 1)); rep(b,20) { int A_xor = 0, B_xor = 0; rep(i,N) A_xor ^= !!(A[i] & (1 << b)); rep(i,M) B_xor ^= !!(B[i] & (1 << b)); ans *= (A_xor == B_xor ? p2 : 0); } cout << ans << endl; }