結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-03-16 22:07:22 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 56,298 bytes |
| コンパイル時間 | 7,744 ms |
| コンパイル使用メモリ | 291,372 KB |
| 最終ジャッジ日時 | 2025-01-28 09:54:02 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In function 'FPS<mint> log(const FPS<mint>&, int)':
main.cpp:1300:19: error: expected 'auto' or 'decltype(auto)' after 'integral'
1300 | FPS res = integral(diff(f) * inv(f, deg));
| ^~~~~~~~
main.cpp:1300:19: error: 'auto(x)' cannot be constrained
1300 | FPS res = integral(diff(f) * inv(f, deg));
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include<bits/stdc++.h>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
#define all(v) (v).begin(), (v).end()
using namespace std;
using ll=long long;
using FLOW=int;
using P = pair<ll,ll>;
const long double PI=acos(-1);
const ll INF=1e18;
const int inf=1e9;
struct Edge {
ll to;
ll cost;
};
using Graph=vector<vector<Edge>>;
template <typename T>
bool chmax(T &a,const T& b){
if (a<b){
a=b;
return true;
}
return false;
}
template <typename T>
bool chmin(T &a,const T& b){
if (a>b){
a=b;
return true;
}
return false;
}
template<int MOD> struct Fp{
ll val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
if (val < 0) val += MOD;
}
static constexpr int getmod() { return MOD; }
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
ll a = r.val, b = MOD, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
constexpr bool operator < (const Fp& r) const noexcept {
return this->val < r.val;
}
friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept {
Fp<MOD> res=1,r=a;
while(n){
if(n&1) res*=r;
r*=r;
n>>=1;
}
return res;
}
friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
return Fp<MOD>(u);
}
};
struct SCCgraph{
// input
vector<vector<int>> G, rG;
// result
vector<vector<int>> scc;
vector<int> cmp;
vector<vector<int>> dag;
// constructor
SCCgraph(int N) : G(N), rG(N) {}
// add edge
void addedge(int u, int v) {
G[u].push_back(v);
rG[v].push_back(u);
}
// decomp
vector<bool> seen;
vector<int> vs, rvs;
void dfs(int v) {
seen[v] = true;
for (auto e : G[v]) if (!seen[e]) dfs(e);
vs.push_back(v);
}
void rdfs(int v, int k) {
seen[v] = true;
cmp[v] = k;
for (auto e : rG[v]) if (!seen[e]) rdfs(e, k);
rvs.push_back(v);
}
// reconstruct
set<pair<int,int>> newEdges;
void reconstruct() {
int N = (int)G.size();
int dV = (int)scc.size();
dag.resize(dV);
newEdges.clear();
for (int i = 0; i < N; ++i) {
int u = cmp[i];
for (auto e : G[i]) {
int v = cmp[e];
if (u == v) continue;
if (!newEdges.count({u, v})) {
dag[u].push_back(v);
newEdges.insert({u, v});
}
}
}
}
void solve() {
// first dfs
int N = (int)G.size();
seen.assign(N, false);
vs.clear();
for (int v = 0; v < N; ++v) if (!seen[v]) dfs(v);
// back dfs
int k = 0;
scc.clear();
cmp.assign(N, -1);
seen.assign(N, false);
for (int i = N - 1; i >= 0; --i) {
if (!seen[vs[i]]) {
rvs.clear();
rdfs(vs[i], k++);
scc.push_back(rvs);
}
}
// reconstruct
reconstruct();
}
};
template<typename T> struct SegmentTree{
using F=function<T(T,T)>;
F fT;
const T et;
int n;
vector<T> dat;
SegmentTree(int N,F fT_,T et_) : fT(fT_),et(et_){
n=1;
while(n<N)n*=2;
dat.assign(2*n-1,et_);
}
void add(int k,T x){
k+=n-1;
dat[k]+=x;
while(k){
k=(k-1)/2;
dat[k]=fT(dat[k*2+1],dat[k*2+2]);
}
}
void apply(int k,T x){
k+=n-1;
dat[k]=fT(dat[k],x);
while(k){
k=(k-1)/2;
dat[k]=fT(dat[k*2+1],dat[k*2+2]);
}
}
void update(int k,T x){
k+=n-1;
dat[k]=x;
while(k){
k=(k-1)/2;
dat[k]=fT(dat[k*2+1],dat[k*2+2]);
}
}
T query(int l,int r){
return query_sub(l,r,0,0,n);
}
T query_sub(int l,int r,int k=0,int a=0,int b=-1){
if(b<0)b=n;
if(r<=a || b<=l)return et;
if(l<=a && b<=r)return dat[k];
return fT(query_sub(l,r,k*2+1,a,(a+b)/2),query_sub(l,r,k*2+2,(a+b)/2,b));
}
};
struct FenwickTree{
int n;
vector<ll> dat;
FenwickTree(int N){
n=1;
while(n<N) n*=2;
dat.assign(n,0);
}
void add(int k,ll x){
k+=1;
while(k<=n){
dat[k]+=x;
k+=k&-k;
}
}
//sum[0,k)
ll sum(int k){
ll ans=0;
while(k){
ans+=dat[k];
k-=k&-k;
}
return ans;
}
//sum[l,r)
ll sum(int l,int r){
return sum(r)-sum(l);
}
};
template <typename X, typename M>
struct LazySegTree {
using FX = function<X(X, X)>;
using FA = function<X(X, M)>;
using FM = function<M(M, M)>;
using FP = function<M(M, int)>;
int n;
FX fx;
FA fa;
FM fm;
FP fp;
const X ex;
const M em;
vector<X> dat;
vector<M> lazy;
LazySegTree(int n_, FX fx_, FA fa_, FM fm_, FP fp_, X ex_, M em_)
: n(), fx(fx_), fa(fa_), fm(fm_), fp(fp_), ex(ex_), em(em_), dat(n_ * 4, ex), lazy(n_ * 4, em) {
int x = 1;
while (n_ > x) x *= 2;
n = x;
}
void set(int i, X x) { dat[i + n - 1] = x; }
void build() {
for (int k = n - 2; k >= 0; k--) dat[k] = fx(dat[2 * k + 1], dat[2 * k + 2]);
}
/* lazy eval */
void eval(int k, int len) {
if (lazy[k] == em) return; // 更新するものが無ければ終了
if (k < n - 1) { // 葉でなければ子に伝搬
lazy[k * 2 + 1] = fm(lazy[k * 2 + 1], lazy[k]);
lazy[k * 2 + 2] = fm(lazy[k * 2 + 2], lazy[k]);
}
// 自身を更新
dat[k] = fa(dat[k], fp(lazy[k], len));
lazy[k] = em;
}
void update(int a, int b, M x, int k, int l, int r) {
eval(k, r - l);
if (a <= l && r <= b) { // 完全に内側の時
lazy[k] = fm(lazy[k], x);
eval(k, r - l);
} else if (a < r && l < b) { // 一部区間が被る時
update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子
update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子
dat[k] = fx(dat[k * 2 + 1], dat[k * 2 + 2]);
}
}
//[a,b)
void update(int a, int b, M x) { update(a, b, x, 0, 0, n); }
X query_sub(int a, int b, int k, int l, int r) {
eval(k, r - l);
if (r <= a || b <= l) { // 完全に外側の時
return ex;
} else if (a <= l && r <= b) { // 完全に内側の時
return dat[k];
} else { // 一部区間が被る時
X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2);
X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r);
return fx(vl, vr);
}
}
//[a,b)
X query(int a, int b) { return query_sub(a, b, 0, 0, n); }
X get(int i){
return query(i,i+1);
}
};
struct UnionFind{
int n;
vector<int> data;
vector<int> edge_num;
UnionFind(int N) : n(N) , data(N,-1) , edge_num(N,0){}
int root(int x){ // データxが属する木の根を再帰で得る:root(x) = {xの木の根}
return data[x]<0?x:data[x]=root(data[x]);
}
void unite(int x, int y) {
x=root(x);
y=root(y);
if(x!=y){
if (data[x]>data[y]) swap(x, y);
data[x]+=data[y];
data[y]=x;
}
if(x!=y){
edge_num[x]+=edge_num[y];
edge_num[y]=0;
}
edge_num[x]+=1;
}
bool same(int x, int y){ // 2つのデータx, yが属する木が同じならtrueを返す
return root(x)==root(y);
}
int size(int x){
return -data[root(x)];
}
int edge(int x){
return edge_num[root(x)];
}
vector<int> get_roots(){
vector<int> res;
for(int i=0;i<n;i++){
if(data[i]<0) res.push_back(i);
}
return res;
}
};
template< typename flow_t >
struct MFGraph{
static_assert(is_integral< flow_t >::value, "template parameter flow_t must be integral type");
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector< vector< edge > > graph;
vector< int > min_cost, iter;
flow_t max_cap;
int SZ;
explicit MFGraph(int V) : INF(numeric_limits< flow_t >::max()), graph(V), max_cap(0), SZ(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
max_cap = max(max_cap, cap);
graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});
graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});
}
bool build_augment_path(int s, int t, const flow_t &base) {
min_cost.assign(graph.size(), -1);
queue< int > que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1) {
int p = que.front();
que.pop();
for(auto &e : graph[p]) {
if(e.cap >= base && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t find_augment_path(int idx, const int t, flow_t base, flow_t flow) {
if(idx == t) return flow;
flow_t sum = 0;
for(int &i = iter[idx]; i < (int)graph[idx].size(); i++) {
edge &e = graph[idx][i];
if(e.cap >= base && min_cost[idx] < min_cost[e.to]) {
flow_t d = find_augment_path(e.to, t, base, min(flow - sum, e.cap));
if(d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
sum += d;
if(flow - sum < base) break;
}
}
}
return sum;
}
flow_t max_flow(int s, int t) {
if(max_cap == flow_t(0)) return flow_t(0);
flow_t flow = 0;
for(int i = 63 - __builtin_clzll(max_cap); i >= 0; i--) {
flow_t now = flow_t(1) << i;
while(build_augment_path(s, t, now)) {
iter.assign(graph.size(), 0);
flow += find_augment_path(s, t, now, INF);
}
}
return flow;
}
//after max_flow(s,t)
vector<bool> min_cut(int s) {
vector<bool> visited(SZ);
queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : graph[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
}
}
}
};
template< typename flow_t, typename cost_t >
struct MCFGraph{
struct edge {
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector< vector< edge > > graph;
vector< cost_t > potential, min_cost;
vector< int > prevv, preve;
const cost_t INF;
MCFGraph(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost) {
graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f) {
int V = (int) graph.size();
cost_t ret = 0;
using Pi = pair< cost_t, int >;
priority_queue< Pi, vector< Pi >, greater< Pi > > que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while(f > 0) {
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while(!que.empty()) {
Pi p = que.top();
que.pop();
if(min_cost[p.second] < p.first) continue;
for(int i = 0; i < (int)graph[p.second].size(); i++) {
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
if(e.cap > 0 && min_cost[e.to] > nextCost) {
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if(min_cost[t] == INF) return -1;
for(int v = 0; v < V; v++) potential[v] += min_cost[v];
flow_t addflow = f;
for(int v = t; v != s; v = prevv[v]) {
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for(int v = t; v != s; v = prevv[v]) {
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
ll mod(ll a, ll mod) {
return (a%mod+mod)%mod;
}
ll modpow(ll a,ll n,ll mod){
ll res=1;
a%=mod;
while (n>0){
if (n & 1) res*=a;
a *= a;
a%=mod;
n >>= 1;
res%=mod;
}
return res;
}
vector<P> prime_factorize(ll N) {
vector<P> res;
for (ll a = 2; a * a <= N; ++a) {
if (N % a != 0) continue;
ll ex = 0;
while(N % a == 0){
++ex;
N /= a;
}
res.push_back({a, ex});
}
if (N != 1) res.push_back({N, 1});
return res;
}
ll modinv(ll a, ll mod) {
ll b = mod, u = 1, v = 0;
while (b) {
ll t = a/b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
u %= mod;
if (u < 0) u += mod;
return u;
}
ll extGcd(ll a, ll b, ll &p, ll &q) {
if (b == 0) { p = 1; q = 0; return a; }
ll d = extGcd(b, a%b, q, p);
q -= a/b * p;
return d;
}
P ChineseRem(const vector<ll> &b, const vector<ll> &m) {
ll r = 0, M = 1;
for (int i = 0; i < (int)b.size(); ++i) {
ll p, q;
ll d = extGcd(M, m[i], p, q);
if ((b[i] - r) % d != 0) return make_pair(0, -1);
ll tmp = (b[i] - r) / d * p % (m[i]/d);
r += M * tmp;
M *= m[i]/d;
}
return make_pair(mod(r, M), M);
}
template<int m> struct Comb{
unordered_map<int,tuple<ll,vector<ll>,vector<ll>>> mp;
int n_;
ll p_, pm_;
vector<ll> ord_, fact_;
vector<P> pf;
Comb(int n) : n_(n), ord_(n), fact_(n){
pf=prime_factorize(m);
COMinit();
}
void init(int n) {
ord_.resize(n);
fact_.resize(n);
}
void init(long long p, long long pm) {
p_=p,pm_=pm;
ord_[0]=ord_[1]=0;
fact_[0]=fact_[1]=1;
auto&[pms,ord,fac]=mp[p];
pms=pm;
ord.resize(n_);
fac.resize(n_);
ord[0]=ord[1]=0;
fac[0]=fac[1]=1;
for (int i=2;i<n_;i++) {
long long add=0;
long long ni=i;
while (ni % p == 0) add++,ni/=p;
ord_[i]=ord_[i-1]+add;
fact_[i]=fact_[ni-1]*ni%pm;
ord[i]=ord_[i];
fac[i]=fact_[i];
}
}
void init(long long p, long long pm, int n) {
init(n);
init(p, pm);
}
void COMinit(){
for(auto p : pf){
ll ps=p.first,pfs=pow(p.first,p.second);
init(n_);
init(ps,pfs);
}
}
ll com(ll n, ll r,int p) {
if (n<0 || r<0 || n<r) return 0;
auto&[pms,ord,fac]=mp[p];
ll e=ord[n]-ord[r]-ord[n-r];
ll res=fac[n]*modinv(fac[r]*fac[n-r]%pms,pms)%pms;
res=res*modpow(p,e,pms)%pms;
return res;
}
ll operator()(int n, int k){
if(n<0 || k<0 || n<k) return 0;
int sz=pf.size();
vector<long long> vb(sz), vm(sz);
for (int i=0;i<sz;i++) {
long long p = pf[i].first, e = pf[i].second;
long long pm = pow(p,e);
long long b = 1;
b *= com(n, k ,p) % pm;
b %= pm;
vm[i]=pm;
vb[i]=b;
}
auto res = ChineseRem(vb,vm);
return res.first;
}
};
void dfs(const vector<vector<int>> &G,int v,vector<bool> &seen){
seen[v]=true;
for(auto nv : G[v]){
if(seen[nv]) continue;
dfs(G,nv,seen);
}
}
template<typename T>
void dijkstra(const Graph &G,int s,vector<ll> &dist,vector<T> &cnt){
int N = G.size();
dist.assign(N, INF);
cnt.assign(N,0);
priority_queue<P, vector<P>, greater<P>> pq;
dist[s] = 0;
cnt[s] = 1;
pq.emplace(dist[s], s);
while (!pq.empty()){
P p = pq.top();
pq.pop();
int v = p.second;
if (dist[v] < p.first){
continue;
}
for (auto e : G[v]){
if (dist[e.to] > dist[v] + e.cost){
dist[e.to] = dist[v] + e.cost;
pq.emplace(dist[e.to], e.to);
cnt[e.to]=cnt[v];
}else if (dist[e.to] == dist[v] + e.cost){
cnt[e.to]+=cnt[v];
}
}
}
}
void bfs(const vector<vector<int>> &G,int s,vector<int> &dist){
int N=G.size();
dist.assign(N,-1);
dist[s]=0;
deque<int> dq;
dq.push_back(s);
while(dq.size()){
int v=dq[0];
dq.pop_front();
for(auto nv : G[v]){
if(dist[nv]!=-1) continue;
dist[nv]=dist[v]+1;
dq.push_back(nv);
}
}
}
vector<ll> enum_divisors(ll N){
vector<ll> res;
for (ll i = 1; i * i <= N; ++i){
if (N % i == 0){
res.push_back(i);
// 重複しないならば i の相方である N/i も push
if (N/i != i) res.push_back(N/i);
}
}
// 小さい順に並び替える
sort(res.begin(), res.end());
return res;
}
ll Euler(ll n){
vector<pair<ll,ll>> pf=prime_factorize(n);
ll res=n;
for(auto p : pf){
res*=(p.first-1);
res/=p.first;
}
return res;
}
//dist must be initialized with INF
void warshall_floyd(vector<vector<ll>> &dist,int n){
for(int i=0;i<n;i++) dist[i][i]=0;
for (int k = 0; k < n; k++){
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
//[1,N]
vector<int> Eratosthenes(int N) {
vector<int> isprime(N+1,1);
isprime[1]=0;
for (int p=2;p<=N;++p){
if (!isprime[p]) continue;
for (int q=p*2;q<=N;q+=p) {
isprime[q]=0;
}
}
return isprime;
}
//log X 素因数分解
struct PrimeFact{
vector<int> era;
PrimeFact(int maxA) : era(maxA+1,-1){
for(int p=2;p<=maxA;++p){
if(era[p]!=-1) continue;
for(int q=p;q<=maxA;q+=p){
era[q]=p;
}
}
}
vector<P> prime_fact(int x){
vector<P> res;
while(1<x){
int p=era[x],ex=0;
while(x%p==0){
x/=p;
ex++;
}
res.push_back({p,ex});
}
reverse(res.begin(),res.end());
return res;
}
};
namespace FFT {
using Real = long double;
struct Comp{
Real re, im;
Comp(){};
Comp(Real re, Real im) : re(re), im(im) {}
Real slen() const { return re*re+im*im; }
Real real() { return re; }
inline Comp operator+(const Comp &c) { return Comp(re+c.re, im+c.im); }
inline Comp operator-(const Comp &c) { return Comp(re-c.re, im-c.im); }
inline Comp operator*(const Comp &c) { return Comp(re*c.re-im*c.im, re*c.im+im*c.re); }
inline Comp operator/(const Real &c) { return Comp(re/c, im/c); }
inline Comp conj() const { return Comp(re, -im); }
};
void fft(vector<Comp>& a, bool inverse){
int n = a.size();
static bool prepared = false;
static vector<Comp> z(30);
if(!prepared){
prepared = true;
for(int i=0; i<30; i++){
Real ang = 2*PI/(1 << (i+1));
z[i] = Comp(cos(ang), sin(ang));
}
}
for (size_t i = 0, j = 1; j < n; ++j) {
for (size_t k = n >> 1; k > (i ^= k); k >>= 1);
if (i > j) swap(a[i], a[j]);
}
for (int i = 0, t = 1; t < n; ++i, t <<= 1) {
Comp bw = z[i];
if(inverse) bw = bw.conj();
for (int i = 0; i < n; i += t * 2) {
Comp w(1,0);
for (int j = 0; j < t; ++j) {
int l = i + j, r = i + j + t;
Comp c = a[l], d = a[r] * w;
a[l] = c + d;
a[r] = c - d;
w = w * bw;
}
}
}
if(inverse)
for(int i=0; i<n; i++) a[i] = a[i]/(Real)n;
}
template<typename T>
vector<T> mul(vector<T> &a, vector<T> &b, bool issquare){
int deg = a.size() + b.size();
int n = 1;
while(n < deg) n <<= 1;
vector<Comp> fa,fb;
fa.resize(n); fb.resize(n);
for(int i=0;i<n;i++){
if(i < a.size()) fa[i] = Comp(a[i], 0);
else fa[i] = Comp(0,0);
if(i < b.size()) fb[i] = Comp(b[i], 0);
else fb[i] = Comp(0,0);
}
for(int i=0;i<b.size();i++) fb[i] = Comp(b[i], 0);
fft(fa, false);
if(issquare) fb = fa;
else fft(fb, false);
for(int i=0;i<n;i++) fa[i] = fa[i] * fb[i];
fft(fa, true);
vector<T> res(n);
for(int i=0;i<n;i++) res[i] = round(fa[i].re);
return res;
}
};
namespace NTT {
int calc_primitive_root(int mod) {
if (mod == 2) return 1;
if (mod == 167772161) return 3;
if (mod == 469762049) return 3;
if (mod == 754974721) return 11;
if (mod == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
long long x = (mod - 1) / 2;
while (x % 2 == 0) x /= 2;
for (long long i = 3; i * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) x /= i;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
int get_fft_size(int N, int M) {
int size_a = 1, size_b = 1;
while (size_a < N) size_a <<= 1;
while (size_b < M) size_b <<= 1;
return max(size_a, size_b) << 1;
}
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
template <class mint>
struct fft_info{
static constexpr int rank2 = bsf_constexpr(mint::getmod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
int g;
fft_info(){
int MOD=mint::getmod();
g=calc_primitive_root(MOD);
root[rank2] = modpow(mint(g),(MOD - 1) >> rank2);
iroot[rank2] = modinv(root[rank2]);
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// number-theoretic transform
template <class mint>
void trans(std::vector<mint>& a) {
int n = int(a.size());
int h = ceil_pow2(n);
int MOD=a[0].getmod();
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[bsf(~(unsigned int)(s))];
}
len++;
} else {
// 4-base
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * MOD * MOD;
auto a0 = 1ULL * a[i + offset].val;
auto a1 = 1ULL * a[i + offset + p].val * rot.val;
auto a2 = 1ULL * a[i + offset + 2 * p].val * rot2.val;
auto a3 = 1ULL * a[i + offset + 3 * p].val * rot3.val;
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val * imag.val;
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[bsf(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint>
void trans_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = ceil_pow2(n);
static const fft_info<mint> info;
int MOD=a[0].getmod();
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(MOD + l.val - r.val) *
irot.val;
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[bsf(~(unsigned int)(s))];
}
len--;
} else {
// 4-base
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val;
auto a1 = 1ULL * a[i + offset + 1 * p].val;
auto a2 = 1ULL * a[i + offset + 2 * p].val;
auto a3 = 1ULL * a[i + offset + 3 * p].val;
auto a2na3iimag =
1ULL *
mint((MOD + a2 - a3) * iimag.val).val;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (MOD - a1) + a2na3iimag) * irot.val;
a[i + offset + 2 * p] =
(a0 + a1 + (MOD - a2) + (MOD - a3)) *
irot2.val;
a[i + offset + 3 * p] =
(a0 + (MOD - a1) + (MOD - a2na3iimag)) *
irot3.val;
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[bsf(~(unsigned int)(s))];
}
len -= 2;
}
}
}
// for garner
static constexpr int MOD0 = 754974721;
static constexpr int MOD1 = 167772161;
static constexpr int MOD2 = 469762049;
using mint0 = Fp<MOD0>;
using mint1 = Fp<MOD1>;
using mint2 = Fp<MOD2>;
static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
static const mint2 imod01 = 187290749; // imod1 / MOD0;
// small case (T = mint, long long)
template<class T> vector<T> naive_mul
(const vector<T> &A, const vector<T> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
vector<T> res(N + M - 1);
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
res[i + j] += A[i] * B[j];
return res;
}
// mint
template<class mint>
vector<mint> mul(vector<mint> A,vector<mint> B) {
if (A.empty() || B.empty()) return {};
int n = int(A.size()), m = int(B.size());
if (min(n, m) < 30) return naive_mul(A, B);
int MOD = A[0].getmod();
int z = 1 << ceil_pow2(n + m - 1);
if (MOD == 998244353) {
A.resize(z);
trans(A);
B.resize(z);
trans(B);
for (int i = 0; i < z; i++) {
A[i] *= B[i];
}
trans_inv(A);
A.resize(n + m - 1);
mint iz = modinv(mint(z));
for (int i = 0; i < n + m - 1; i++) A[i] *= iz;
return A;
}
vector<mint0> a0(z, 0), b0(z, 0);
vector<mint1> a1(z, 0), b1(z, 0);
vector<mint2> a2(z, 0), b2(z, 0);
for (int i = 0; i < n; ++i)
a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
for (int i = 0; i < m; ++i)
b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < z; ++i) {
a0[i] *= b0[i];
a1[i] *= b1[i];
a2[i] *= b2[i];
}
trans_inv(a0), trans_inv(a1), trans_inv(a2);
static const mint mod0 = MOD0, mod01 = mod0 * MOD1;
mint0 i0=modinv(mint0(z));
mint1 i1=modinv(mint1(z));
mint2 i2=modinv(mint2(z));
vector<mint> res(n + m - 1);
for (int i = 0; i < n + m - 1; ++i) {
a0[i]*=i0;
a1[i]*=i1;
a2[i]*=i2;
int y0 = a0[i].val;
int y1 = (imod0 * (a1[i] - y0)).val;
int y2 = (imod01 * (a2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
};
// Formal Power Series
template <typename mint> struct FPS : vector<mint> {
using vector<mint>::vector;
// constructor
FPS(const vector<mint>& r) : vector<mint>(r) {}
// core operator
inline FPS pre(int siz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
}
inline FPS rev() const {
FPS res = *this;
reverse(begin(res), end(res));
return res;
}
inline FPS& normalize() {
while (!this->empty() && this->back() == 0) this->pop_back();
return *this;
}
// basic operator
inline FPS operator - () const noexcept {
FPS res = (*this);
for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
return res;
}
inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
inline FPS operator << (int x) const { return FPS(*this) <<= x; }
inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
inline FPS& operator += (const mint& v) {
if (this->empty()) this->resize(1);
(*this)[0] += v;
return *this;
}
inline FPS& operator += (const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
return this->normalize();
}
inline FPS& operator -= (const mint& v) {
if (this->empty()) this->resize(1);
(*this)[0] -= v;
return *this;
}
inline FPS& operator -= (const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
return this->normalize();
}
inline FPS& operator *= (const mint& v) {
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
return *this;
}
inline FPS& operator *= (const FPS& r) {
return *this = NTT::mul((*this), r);
}
inline FPS& operator /= (const mint& v) {
assert(v != 0);
mint iv = modinv(v);
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
return *this;
}
inline FPS& operator <<= (int x) {
FPS res(x, 0);
res.insert(res.end(), begin(*this), end(*this));
return *this = res;
}
inline FPS& operator >>= (int x) {
FPS res;
res.insert(res.end(), begin(*this) + x, end(*this));
return *this = res;
}
inline mint eval(const mint& v){
mint res = 0;
for (int i = (int)this->size()-1; i >= 0; --i) {
res *= v;
res += (*this)[i];
}
return res;
}
inline friend FPS gcd(const FPS& f, const FPS& g) {
if (g.empty()) return f;
return gcd(g, f % g);
}
// advanced operation
// df/dx
inline friend FPS diff(const FPS& f) {
int n = (int)f.size();
FPS res(n-1);
for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
return res;
}
// \int f dx
inline friend FPS integral(const FPS& f) {
int n = (int)f.size();
FPS res(n+1, 0);
for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
return res;
}
// inv(f), f[0] must not be 0
inline friend FPS inv(const FPS& f, int deg) {
assert(f[0] != 0);
if (deg < 0) deg = (int)f.size();
FPS res({mint(1) / f[0]});
for (int i = 1; i < deg; i <<= 1) {
res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
}
res.resize(deg);
return res;
}
inline friend FPS inv(const FPS& f) {
return inv(f, f.size());
}
// division, r must be normalized (r.back() must not be 0)
inline FPS& operator /= (const FPS& r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
if (this->size() < r.size()) {
this->clear();
return *this;
}
int need = (int)this->size() - (int)r.size() + 1;
*this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
return *this;
}
inline FPS& operator %= (const FPS &r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
FPS q = (*this) / r;
return *this -= q * r;
}
inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }
// log(f) = \int f'/f dx, f[0] must be 1
inline friend FPS log(const FPS& f, int deg) {
assert(f[0] == 1);
FPS res = integral(diff(f) * inv(f, deg));
res.resize(deg);
return res;
}
inline friend FPS log(const FPS& f) {
return log(f, f.size());
}
// exp(f), f[0] must be 0
inline friend FPS exp(const FPS& f, int deg) {
assert(f[0] == 0);
FPS res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
}
res.resize(deg);
return res;
}
inline friend FPS exp(const FPS& f) {
return exp(f, f.size());
}
// pow(f) = exp(e * log f)
inline friend FPS pow(const FPS& f, long long e, int deg) {
long long i = 0;
while (i < (int)f.size() && f[i] == 0) ++i;
if (i == (int)f.size()) return FPS(deg, 0);
if (i * e >= deg) return FPS(deg, 0);
mint k = f[i];
FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i);
res.resize(deg);
return res;
}
inline friend FPS pow(const FPS& f, long long e) {
return pow(f, e, f.size());
}
// sqrt(f), f[0] must be 1
inline friend FPS sqrt_base(const FPS& f, int deg) {
assert(f[0] == 1);
mint inv2 = mint(1) / 2;
FPS res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1);
for (mint& x : res) x *= inv2;
}
res.resize(deg);
return res;
}
inline friend FPS sqrt_base(const FPS& f) {
return sqrt_base(f, f.size());
}
FPS taylor_shift(mint c) const {
int n = (int) this->size();
vector<mint> fact(n), rfact(n);
fact[0] = rfact[0] = mint(1);
for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * mint(i);
rfact[n - 1] = mint(1) / fact[n - 1];
for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * mint(i);
FPS p(*this);
for(int i = 0; i < n; i++) p[i] *= fact[i];
p = p.rev();
FPS bs(n, mint(1));
for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
p = (p * bs).pre(n);
p = p.rev();
for(int i = 0; i < n; i++) p[i] *= rfact[i];
return p;
}
};
struct SegP{
int n;
vector<P> dat;
SegP(){}
SegP(vector<P> v){
int sz=v.size();
n=1;
while(n<sz) n*=2;
dat.assign(2*n-1,{1e9,1e9});
for(int i=0;i<sz;i++) dat[i+n-1]=v[i];
for(int i=n-2;i>=0;i--) dat[i]=min(dat[2*i+1],dat[2*i+2]);
}
void resize(int N){
n=1;
while(n<N) n*=2;
dat.assign(2*n-1,{1e9,1e9});
}
void vecset(vector<P> v){
for(int i=0;i<v.size();i++){
dat[i+n-1]=v[i];
}
for(int i=n-2;i>=0;i--) dat[i]=min(dat[2*i+1],dat[2*i+2]);
}
void update(int k,ll x){
k+=(n-1);
dat[k]={x,k};
while(k>0){
k=(k-1)/2;
dat[k]=min(dat[2*k+1],dat[2*k+2]);
}
}
P query(int l,int r,int k=0,int a=0,int b=-1){
if(b<0) b=n;
if(b<=l||r<=a) return make_pair(1e9,1e9);
if(l<=a&&b<=r) return dat[k];
P vl=query(l,r,2*k+1,a,(a+b)/2);
P vr=query(l,r,2*k+2,(a+b)/2,b);
return min(vl,vr);
}
};
void Edfs(const Graph &G,int v,int p,vector<int> &ET){
ET.push_back(v);
for(auto nv : G[v]){
if(nv.to==p) continue;
Edfs(G,nv.to,v,ET);
ET.push_back(v);
}
}
void Ddfs(const Graph &G,int v,int p,vector<int> &depth){
for(auto nv : G[v]){
if(nv.to==p) continue;
depth[nv.to]=depth[v]+1;
Ddfs(G,nv.to,v,depth);
}
}
//s=0
void Tbfs(const Graph &G,int s,vector<ll> &dist){
int N=G.size();
dist.assign(N,-1);
dist[s]=0;
deque<int> dq;
dq.push_back(s);
while(dq.size()){
int v=dq[0];
dq.pop_front();
for(auto nv : G[v]){
if(dist[nv.to]!=-1) continue;
dist[nv.to]=dist[v]+nv.cost;
dq.push_back(nv.to);
}
}
}
//first : p=-1
void dfs_sz(const vector<vector<int>> &G,int v,int p,vector<int> &sz){
int ret=1;
for(int nv : G[v]){
if(nv==p) continue;
dfs_sz(G,nv,v,sz);
ret+=sz[nv];
}
sz[v]=ret;
}
struct LCA{
vector<int> fst,ET,depth;
vector<P> pv;
SegP seg;
vector<ll> dist;
LCA(const Graph G){
int n=G.size();
fst.assign(n,-1);
depth.resize(n);
Edfs(G,0,-1,ET);
Ddfs(G,0,-1,depth);
for(int i=0;i<ET.size();i++){
if(fst[ET[i]]==-1) fst[ET[i]]=i;
}
pv.resize(ET.size());
for(int i=0;i<ET.size();i++){
pv[i].first=depth[ET[i]];
pv[i].second=ET[i];
}
seg.resize(pv.size());
seg.vecset(pv);
Tbfs(G,0,dist);
}
P lca(int u,int v){
if(fst[u]>fst[v]) swap(u,v);
P ret=seg.query(fst[u],fst[v]+1);
return ret;
}
ll dis(int u,int v){
P ca=lca(u,v);
return dist[u]+dist[v]-2*dist[ca.second];
}
};
vector<int> topo_sort(const vector<vector<int>> &G) {
vector<int> ret;
int n = (int)G.size();
vector<int> ind(n);
for (int i = 0; i < n; i++) {
for (auto e : G[i]) {
ind[e]++;
}
}
priority_queue<int,vector<int>,greater<int>> que;
for (int i = 0; i < n; i++) {
if (ind[i] == 0) {
que.push(i);
}
}
while (!que.empty()) {
int now = que.top();
ret.push_back(now);
que.pop();
for (auto e : G[now]) {
ind[e]--;
if (ind[e] == 0) {
que.push(e);
}
}
}
return ret;
}
template <typename mint> FPS<mint> product(vector<FPS<mint>> a){
int siz=1;
while(siz<int(a.size())){
siz<<=1;
}
vector<FPS<mint>> res(siz*2-1,{1});
for(int i=0;i<int(a.size());++i){
res[i+siz-1]=a[i];
}
for(int i=siz-2;i>=0;--i){
res[i]=res[2*i+1]*res[2*i+2];
}
return res[0];
}
template<typename mint> FPS<mint> inv_sum(vector<FPS<mint>> f){
int siz=1;
while(siz<int(f.size())){
siz<<=1;
}
vector<FPS<mint>> mol(siz*2-1),dem(siz*2-1,{1});
for(size_t i=0;i<f.size();++i){
mol[i+siz-1]={1};
dem[i+siz-1]=f[i];
}
for(int i=siz-2;i>=0;--i){
dem[i]=dem[2*i+1]*dem[2*i+2];
mol[i]=mol[2*i+1]*dem[2*i+2]+mol[2*i+2]*dem[2*i+1];
}
mol[0]*=inv(dem[0]);
return mol[0];
}
template <typename mint> FPS<mint> inv(FPS<mint> A, int n) { // Q-(1/Q-A)/(-Q^{-2})
FPS<mint> B{mint(1)/A[0]};
while (sz(B) < n) { int x = 2*sz(B);
B = RSZ(2*B-RSZ(A,x)*B*B,x); }
return RSZ(B,n);
}
template <typename mint> FPS<mint> rev(FPS<mint> p) { reverse(p.begin(),p.end()); return p; }
template <typename mint> FPS<mint> RSZ(FPS<mint> p, int x) { p.resize(x); return p; }
template <typename mint> pair<FPS<mint>,FPS<mint>> divi(const FPS<mint>& f, const FPS<mint>& g) {
if (sz(f) < sz(g)) return {{},f};
FPS<mint> q = NTT::mul(inv(rev(g),sz(f)-sz(g)+1),rev(f));
q = rev(RSZ(q,sz(f)-sz(g)+1));
auto r = RSZ(f-NTT::mul(q,g),sz(g)-1); return {q,r};
}
template <typename mint>
void segProd(vector<FPS<mint>>& stor, vector<mint>& v, int ind, int l, int r) { // v -> places to evaluate at
if (l == r) { stor[ind] = {-v[l],1}; return; }
int m = (l+r)/2; segProd(stor,v,2*ind,l,m); segProd(stor,v,2*ind+1,m+1,r);
stor[ind] = stor[2*ind]*stor[2*ind+1];
}
template <typename mint>
void evalAll(vector<FPS<mint>>& stor, vector<mint>& res,FPS<mint> v, int ind = 1) {
v = divi(v,stor[ind]).second;
if (sz(stor[ind]) == 2) { res.push_back(sz(v)?v[0]:mint(0)); return; }
evalAll(stor,res,v,2*ind); evalAll(stor,res,v,2*ind+1);
}
template <typename mint> vector<mint> multieval(FPS<mint> v, vector<mint> p) {
vector<FPS<mint>> stor(4*sz(p)); segProd(stor,p,1,0,sz(p)-1);
vector<mint> res; evalAll(stor,res,v); return res; }
template <typename mint> FPS<mint> combAll(vector<FPS<mint>>& stor, FPS<mint>& dems, int ind, int l, int r) {
if (l == r) return {dems[l]};
int m = (l+r)/2;
FPS<mint> a = combAll(stor,dems,2*ind,l,m), b = combAll(stor,dems,2*ind+1,m+1,r);
return a*stor[2*ind+1]+b*stor[2*ind];
}
template <typename mint> FPS<mint> interpolate(vector<mint> x,vector<mint> y) {
int n=sz(x);
vector<FPS<mint>> a;
for(int i=0;i<n;i++){
FPS<mint> b={-x[i],mint(1)};
a.push_back(b);
}
FPS<mint> g=product(a);
FPS<mint> g_=diff(g);
vector<mint> evaled=multieval(g_,x);
vector<FPS<mint>> c(n);
for(int i=0;i<n;i++){
FPS<mint> d={-x[i],1};
c[i]=d*evaled[i];
}
int siz=1;
while(siz<int(c.size())){
siz<<=1;
}
vector<FPS<mint>> mol(siz*2-1),dem(siz*2-1,{1});
for(size_t i=0;i<c.size();++i){
mol[i+siz-1]={y[i]};
dem[i+siz-1]=c[i];
}
for(int i=siz-2;i>=0;--i){
dem[i]=dem[2*i+1]*dem[2*i+2];
mol[i]=mol[2*i+1]*dem[2*i+2]+mol[2*i+2]*dem[2*i+1];
}
mol[0]*=inv(dem[0]);
return RSZ(g*mol[0],n);
}
template<int m> struct Perm{
unordered_map<int,tuple<ll,vector<ll>,vector<ll>>> mp;
int n_;
ll p_, pm_;
vector<ll> ord_, fact_;
vector<P> pf;
Perm(int n) : n_(n), ord_(n), fact_(n) {
pf=prime_factorize(m);
PERMinit();
}
void init(int n) {
ord_.resize(n);
fact_.resize(n);
}
void init(long long p, long long pm) {
p_=p,pm_=pm;
ord_[0]=ord_[1]=0;
fact_[0]=fact_[1]=1;
auto&[pms,ord,fac]=mp[p];
pms=pm;
ord.resize(n_);
fac.resize(n_);
ord[0]=ord[1]=0;
fac[0]=fac[1]=1;
for (int i=2;i<n_;i++) {
long long add=0;
long long ni=i;
while (ni % p == 0) add++,ni/=p;
ord_[i]=ord_[i-1]+add;
fact_[i]=fact_[ni-1]*ni%pm;
ord[i]=ord_[i];
fac[i]=fact_[i];
}
}
void init(long long p, long long pm, int n) {
init(n);
init(p, pm);
}
void PERMinit(){
for(auto p : pf){
ll ps=p.first,pfs=pow(p.first,p.second);
init(n_);
init(ps,pfs);
}
}
ll perm(ll n, ll r,int p) {
if (n<0 || r<0 || n<r) return 0;
auto&[pms,ord,fac]=mp[p];
ll e=ord[n]-ord[n-r];
ll res=fac[n]*modinv(fac[n-r]%pms,pms)%pms;
res=res*modpow(p,e,pms)%pms;
return res;
}
ll operator()(int n, int k){
if(n<0 || k<0 || n<k) return 0;
vector<long long> vb, vm;
for (auto ps : pf) {
long long p = ps.first, e = ps.second;
long long pm = pow(p,e);
long long b = 1;
b *= perm(n, k ,p) % pm;
b %= pm;
vm.push_back(pm);
vb.push_back(b);
}
auto res = ChineseRem(vb,vm);
return res.first;
}
};
struct HLD{
Graph G;
vector<int> siz,a,ind,edge,dep,vertex,par;
void dfs_sz(int v,int p){
int ret=1;
for(auto nv : G[v]){
if(nv.to==p) continue;
dfs_sz(nv.to,v);
ret+=siz[nv.to];
}
siz[v]=ret;
}
void Ddfs(int v,int p){
for(auto nv : G[v]){
if(nv.to==p) continue;
dep[nv.to]=dep[v]+1;
Ddfs(nv.to,v);
}
}
void hld(int v,int k,int p){
ind[v]=vertex.size();
a[v]=k;
vertex.push_back(v);
if(G[v].size()==1&&v!=0) return;
int mxind=-1;
int mx=0;
for(int i=0;i<(int)G[v].size();i++){
auto nv=G[v][i];
if(nv.to==p) continue;
if(siz[nv.to]>mx){
mx=siz[nv.to];
mxind=i;
}
}
hld(G[v][mxind].to,k,v);
for(int i=0;i<(int)G[v].size();i++){
auto nv=G[v][i];
if(nv.to==p) continue;
if(i!=mxind) hld(nv.to,nv.to,v);
}
}
void getpar(int v,int p){
par[v]=p;
for(auto nv : G[v]){
if(nv.to==p) continue;
getpar(nv.to,v);
edge[ind[nv.to]]=nv.cost;
}
}
HLD(const Graph &g) : siz((int)g.size()), a((int)g.size()), ind((int)g.size()), edge((int)g.size()), dep((int)g.size()), par((int)g.size()){
G=g;
dfs_sz(0,-1);
hld(0,0,-1);
getpar(0,-1);
Ddfs(0,-1);
}
//[l,r]
pair<int,int> getsubtree(int v){
return make_pair(ind[v],ind[v]+siz[v]-1);
}
//[l,r]...
vector<pair<int,int>> getpath(int u,int v){
vector<pair<int,int>> ret;
while(a[u]!=a[v]){
if(dep[a[u]]<=dep[a[v]]){
ret.push_back({ind[a[v]],ind[v]});
v=par[a[v]];
}else{
ret.push_back({ind[a[u]],ind[u]});
u=par[a[u]];
}
}
ret.push_back({min(ind[u],ind[v]),max(ind[u],ind[v])});
return ret;
}
int lca(int u,int v){
vector<pair<int,int>> path=getpath(u,v);
return vertex[path[path.size()-1].first];
}
};
template <typename T>
vector<int> compress(vector<T> &x){
vector<T> vals=x;
vector<int> res;
sort(vals.begin(),vals.end());
auto it=unique(vals.begin(),vals.end());
vals.erase(it,vals.end());
for(auto xx : x){
int ret=lower_bound(vals.begin(),vals.end(),xx) - vals.begin();
res.push_back(ret);
}
return res;
}
/**
* @brief Succinct Indexable Dictionary(完備辞書)
*/
struct SuccinctIndexableDictionary {
size_t length;
size_t blocks;
vector< unsigned > bit, sum;
SuccinctIndexableDictionary() = default;
SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) {
bit.assign(blocks, 0U);
sum.assign(blocks, 0U);
}
void set(int k) {
bit[k >> 5] |= 1U << (k & 31);
}
void build() {
sum[0] = 0U;
for(int i = 1; i < blocks; i++) {
sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]);
}
}
bool operator[](int k) {
return (bool((bit[k >> 5] >> (k & 31)) & 1));
}
int rank(int k) {
return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1)));
}
int rank(bool val, int k) {
return (val ? rank(k) : k - rank(k));
}
};
/*
* @brief Wavelet Matrix(ウェーブレット行列)
* @docs docs/wavelet-matrix.md
*/
template< typename T, int MAXLOG >
struct WaveletMatrix {
size_t length;
SuccinctIndexableDictionary matrix[MAXLOG];
int mid[MAXLOG];
WaveletMatrix() = default;
WaveletMatrix(vector< T > v) : length(v.size()) {
vector< T > l(length), r(length);
for(int level = MAXLOG - 1; level >= 0; level--) {
matrix[level] = SuccinctIndexableDictionary(length + 1);
int left = 0, right = 0;
for(int i = 0; i < length; i++) {
if(((v[i] >> level) & 1)) {
matrix[level].set(i);
r[right++] = v[i];
} else {
l[left++] = v[i];
}
}
mid[level] = left;
matrix[level].build();
v.swap(l);
for(int i = 0; i < right; i++) {
v[left + i] = r[i];
}
}
}
pair< int, int > succ(bool f, int l, int r, int level) {
return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f};
}
// v[k]
T access(int k) {
T ret = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
bool f = matrix[level][k];
if(f) ret |= T(1) << level;
k = matrix[level].rank(f, k) + mid[level] * f;
}
return ret;
}
T operator[](const int &k) {
return access(k);
}
// count i s.t. (0 <= i < r) && v[i] == x
int rank(const T &x, int r) {
int l = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
tie(l, r) = succ((x >> level) & 1, l, r, level);
}
return r - l;
}
// k-th(0-indexed) smallest number in v[l,r)
T kth_smallest(int l, int r, int k) {
assert(0 <= k && k < r - l);
T ret = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l);
bool f = cnt <= k;
if(f) {
ret |= T(1) << level;
k -= cnt;
}
tie(l, r) = succ(f, l, r, level);
}
return ret;
}
// k-th(0-indexed) largest number in v[l,r)
T kth_largest(int l, int r, int k) {
return kth_smallest(l, r, r - l - k - 1);
}
// count i s.t. (l <= i < r) && (v[i] < upper)
int range_freq(int l, int r, T upper) {
int ret = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
bool f = ((upper >> level) & 1);
if(f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l);
tie(l, r) = succ(f, l, r, level);
}
return ret;
}
// count i s.t. (l <= i < r) && (lower <= v[i] < upper)
int range_freq(int l, int r, T lower, T upper) {
return range_freq(l, r, upper) - range_freq(l, r, lower);
}
// max v[i] s.t. (l <= i < r) && (v[i] < upper)
T prev_value(int l, int r, T upper) {
int cnt = range_freq(l, r, upper);
return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1);
}
// min v[i] s.t. (l <= i < r) && (lower <= v[i])
T next_value(int l, int r, T lower) {
int cnt = range_freq(l, r, lower);
return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);
}
};
template< typename T, int MAXLOG >
struct CompressedWaveletMatrix {
WaveletMatrix< int, MAXLOG > mat;
vector< T > ys;
CompressedWaveletMatrix(const vector< T > &v) : ys(v) {
sort(begin(ys), end(ys));
ys.erase(unique(begin(ys), end(ys)), end(ys));
vector< int > t(v.size());
for(int i = 0; i < v.size(); i++) t[i] = get(v[i]);
mat = WaveletMatrix< int, MAXLOG >(t);
}
inline int get(const T& x) {
return lower_bound(begin(ys), end(ys), x) - begin(ys);
}
T access(int k) {
return ys[mat.access(k)];
}
T operator[](const int &k) {
return access(k);
}
int rank(const T &x, int r) {
auto pos = get(x);
if(pos == ys.size() || ys[pos] != x) return 0;
return mat.rank(pos, r);
}
T kth_smallest(int l, int r, int k) {
return ys[mat.kth_smallest(l, r, k)];
}
T kth_largest(int l, int r, int k) {
return ys[mat.kth_largest(l, r, k)];
}
int range_freq(int l, int r, T upper) {
return mat.range_freq(l, r, get(upper));
}
int range_freq(int l, int r, T lower, T upper) {
return mat.range_freq(l, r, get(lower), get(upper));
}
T prev_value(int l, int r, T upper) {
auto ret = mat.prev_value(l, r, get(upper));
return ret == -1 ? T(-1) : ys[ret];
}
T next_value(int l, int r, T lower) {
auto ret = mat.next_value(l, r, get(lower));
return ret == -1 ? T(-1) : ys[ret];
}
};
template<typename T>
vector<T> shortest_path_faster_algorithm(const Graph &G, int s) {
vector<T> dist(G.size(), INF);
vector<int> pending(G.size(), 0), times(G.size(), 0);
queue<int> que;
que.emplace(s);
pending[s]=true;
++times[s];
dist[s]=0;
while(!que.empty()) {
int p = que.front();
que.pop();
pending[p] = false;
for(auto &e : G[p]) {
T next_cost = dist[p] + e.cost;
if(next_cost >= dist[e.to]) continue;
dist[e.to] = next_cost;
if(!pending[e.to]) {
if(++times[e.to] >= (int)G.size()) return vector<T>();
pending[e.to] = true;
que.emplace(e.to);
}
}
}
return dist;
}
// RAQ+RSQ
using X = ll; //dat
using M = ll; //lazy
auto fx = [](X x1, X x2) -> X { return x1 + x2; }; //dat×dat 行う二項演算
auto fa = [](X x, M m) -> X { return x + m; }; //datをlazyで更新する演算
auto fm = [](M m1, M m2) -> M { return m1 + m2; }; //lazyの伝達を行う演算
auto fp = [](M m, int n) -> M { return m * n; }; //p(m,n)=m*m*...*m 子のdatをlazyで更新した時のdatの作用
X ex = 0; //x*ex=x (Xの単位元) dat
M em = 0; //x*em=x (Mの単位元) lazy
using mint=Fp<998244353>;
int main(){
int n,q;
cin>>n>>q;
vector<FPS<mint>> f(n,FPS<mint>(2));
for(int i=0;i<n;i++){
mint a;
cin>>a;
f[i][0]=a-mint(1);
f[i][1]=1;
}
FPS<mint> g=product(f);
for(int i=0;i<q;i++){
int b;
cin>>b;
cout<<g[b]<<endl;
}
}