結果

問題 No.1880 Many Ways
ユーザー 杨娵隅杨娵隅
提出日時 2022-03-19 12:43:46
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 9,764 bytes
コンパイル時間 3,007 ms
コンパイル使用メモリ 235,532 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-04 09:37:33
合計ジャッジ時間 16,340 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(...) emplace_back(__VA_ARGS__)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
#define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--)
#define siz(x) (ll) x.size()
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;

template <class T>
bool chmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return 1;
    }
    return 0;
}

template <class T>
bool chmax(T &a, const T &b) {
    if (b > a) {
        a = b;
        return 1;
    }
    return 0;
}

template <class T>
void print(vector<T> a) {
    if (a.empty())
        cout << '\n';
    else {
        for (int i = 0; i < a.size(); i++)
            cout << a[i] << (i + 1 == a.size() ? '\n' : ' ');
    }
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long &x, long long &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<ll> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y)
            return (false);
        if (data[x] > data[y])
            swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0)
            return (k);
        return (data[k] = find(data[k]));
    }

    ll size(int k) {
        return (-data[find(k)]);
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }

    int operator[](int k) {
        return find(k);
    }
};

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {
    }

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
    }

    static int get_mod() {
        return mod;
    }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod)
            x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod)
            x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() {
        return *this += Mod_Int(1);
    }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() {
        return *this -= Mod_Int(1);
    }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const {
        return Mod_Int(-x);
    }

    Mod_Int operator+(const Mod_Int &p) const {
        return Mod_Int(*this) += p;
    }

    Mod_Int operator-(const Mod_Int &p) const {
        return Mod_Int(*this) -= p;
    }

    Mod_Int operator*(const Mod_Int &p) const {
        return Mod_Int(*this) *= p;
    }

    Mod_Int operator/(const Mod_Int &p) const {
        return Mod_Int(*this) /= p;
    }

    bool operator==(const Mod_Int &p) const {
        return x == p.x;
    }

    bool operator!=(const Mod_Int &p) const {
        return x != p.x;
    }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1)
                ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1)
            ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    return ans;
}

ll modinv2(ll a, ll mod) {
    ll b = mod, u = 1, v = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        u -= t * v;
        swap(u, v);
    }
    u %= mod;
    if (u < 0)
        u += mod;
    return u;
}

constexpr int mod = 1000000007;
// constexpr int mod = 998244353;
// constexpr int mod = 31607;
using mint = Mod_Int<mod>;

mint mpow(mint x, ll n) {
    mint ans = 1;
    while (n != 0) {
        if (n & 1)
            ans *= x;
        x *= x;
        n = n >> 1;
    }
    return ans;
}

// ----- library -------
template <class T>
struct Matrix {
    vector<vector<T>> A;

    Matrix() {
    }

    Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {
    }

    Matrix(size_t n) : A(n, vector<T>(n, 0)){};

    size_t height() const {
        return (A.size());
    }

    size_t width() const {
        return (A[0].size());
    }

    inline const vector<T> &operator[](int k) const {
        return (A.at(k));
    }

    inline vector<T> &operator[](int k) {
        return (A.at(k));
    }

    static Matrix I(size_t n) {
        Matrix mat(n);
        for (int i = 0; i < n; i++)
            mat[i][i] = 1;
        return (mat);
    }

    Matrix &operator+=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                (*this)[i][j] += B[i][j];
        return (*this);
    }

    Matrix &operator-=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                (*this)[i][j] -= B[i][j];
        return (*this);
    }

    Matrix &operator*=(const Matrix &B) {
        size_t n = height(), m = B.width(), p = width();
        assert(p == B.height());
        vector<vector<T>> C(n, vector<T>(m, 0));
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                for (int k = 0; k < p; k++)
                    C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
        A.swap(C);
        return (*this);
    }

    Matrix &operator^=(long long k) {
        Matrix B = Matrix::I(height());
        while (k > 0) {
            if (k & 1)
                B *= *this;
            *this *= *this;
            k >>= 1LL;
        }
        A.swap(B.A);
        return (*this);
    }

    Matrix operator+(const Matrix &B) const {
        return (Matrix(*this) += B);
    }

    Matrix operator-(const Matrix &B) const {
        return (Matrix(*this) -= B);
    }

    Matrix operator*(const Matrix &B) const {
        return (Matrix(*this) *= B);
    }

    Matrix operator^(const long long k) const {
        return (Matrix(*this) ^= k);
    }

    friend ostream &operator<<(ostream &os, Matrix &p) {
        size_t n = p.height(), m = p.width();
        for (int i = 0; i < n; i++) {
            os << "[";
            for (int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "]\n" : ",");
            }
        }
        return (os);
    }

    T determinant() {
        Matrix B(*this);
        assert(width() == height());
        T ret = 1;
        for (int i = 0; i < width(); i++) {
            int idx = -1;
            for (int j = i; j < width(); j++) {
                if (B[j][i] != 0)
                    idx = j;
            }
            if (idx == -1)
                return (0);
            if (i != idx) {
                ret *= -1;
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T vv = B[i][i];
            for (int j = 0; j < width(); j++) {
                B[i][j] /= vv;
            }
            for (int j = i + 1; j < width(); j++) {
                T a = B[j][i];
                for (int k = 0; k < width(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return (ret);
    }
};
mint fib(ll k) {
    Matrix<mint> a(2), b(2, 1);
    a[0][0] = 1, a[0][1] = 1, a[1][0] = 1, b[0][0] = 1, b[1][0] = 0;
    a ^= k;
    a *= b;
    return a[1][0];
}
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    ll a;
    cin >> a;
    if (!a) {
        cout << "2 0\n";
        return 0;
    }
    int n = 1;
    vector<pair<int, int>> e;
    while (a) {
        n += 3;
        if (a & 1) {
            if (n > 4) {
                e.pb(n - 5, n);
                e.pb(n - 4, n);
            } else
                e.pb(1, 4);
        }
        if (n > 4) {
            e.pb(n - 5, n - 2);
            e.pb(n - 5, n - 1);
            e.pb(n - 4, n - 2);
            e.pb(n - 4, n - 1);
            e.pb(n - 3, n);
        } else {
            e.pb(1, 2);
            e.pb(1, 3);
        }
        a >>= 1;
    }
    n++;
    e.pb(n - 1, n);
    cout << n << ' ' << e.size() << '\n';
    for (auto [a, b] : e)
        cout << a << ' ' << b << '\n';
}
0