結果

問題 No.886 Direct
ユーザー hedwig100hedwig100
提出日時 2022-03-20 18:13:23
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 870 ms / 4,000 ms
コード長 5,441 bytes
コンパイル時間 800 ms
コンパイル使用メモリ 76,928 KB
実行使用メモリ 73,600 KB
最終ジャッジ日時 2024-10-07 04:34:24
合計ジャッジ時間 8,158 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 1 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 1 ms
5,248 KB
testcase_12 AC 1 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 1 ms
5,248 KB
testcase_16 AC 1 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 3 ms
5,248 KB
testcase_19 AC 3 ms
5,248 KB
testcase_20 AC 3 ms
5,248 KB
testcase_21 AC 3 ms
5,248 KB
testcase_22 AC 3 ms
5,248 KB
testcase_23 AC 127 ms
20,992 KB
testcase_24 AC 216 ms
30,976 KB
testcase_25 AC 86 ms
16,640 KB
testcase_26 AC 102 ms
18,048 KB
testcase_27 AC 488 ms
51,328 KB
testcase_28 AC 490 ms
51,328 KB
testcase_29 AC 276 ms
26,624 KB
testcase_30 AC 271 ms
26,752 KB
testcase_31 AC 855 ms
73,472 KB
testcase_32 AC 824 ms
73,600 KB
testcase_33 AC 870 ms
73,600 KB
testcase_34 AC 849 ms
73,600 KB
testcase_35 AC 818 ms
73,472 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'void zeta_set(std::vector<T>&)':
main.cpp:40:10: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
   40 |     auto [d, sz] = min_pow2((int)f.size());
      |          ^
main.cpp: In function 'void mebius_set(std::vector<T>&)':
main.cpp:52:10: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
   52 |     auto [d, sz] = min_pow2((int)f.size());
      |          ^

ソースコード

diff #

#include <iostream>
#include <vector>

// a <= b <=> a <= b
// g[x] = \sum_{ i <= x } f[i]
template <class T>
void zeta(std::vector<T> &f) {
    int sz = (int)f.size();
    for (int x = 1; x < sz; x++) {
        f[x] += f[x - 1];
    }
}

template <class T>
void mebius(std::vector<T> &f) {
    int sz = (int)f.size();
    for (int x = sz - 1; x >= 1; x--) {
        f[x] -= f[x - 1];
    }
}

// min_pow2 returns minimum power of 2 larger than x (x <= 2^i)
// and i (pair{i,2^i}).
// x must be more than 0
template <class T>
std::pair<int, T> min_pow2(T x) {
    int i = 0;
    T ret = 1;
    while (x > ret) {
        i++;
        ret <<= 1;
    }
    return std::make_pair(i, ret);
}

// S <= T <=> S \subset T
// g[T] = \sum_{ S \subset T } f[S]
template <class R>
void zeta_set(std::vector<R> &f) {
    auto [d, sz] = min_pow2((int)f.size());
    f.resize(sz, (R)0);
    for (int i = 0; i < d; i++) {
        for (int T = 0; T < sz; T++) {
            if (T & (1 << i))
                f[T] += f[T ^ (1 << i)];
        }
    }
}

template <class R>
void mebius_set(std::vector<R> &f) {
    auto [d, sz] = min_pow2((int)f.size());
    f.resize(sz, (R)0);
    for (int i = 0; i < d; i++) {
        for (int T = 0; T < sz; T++) {
            if (T & (1 << i))
                f[T] -= f[T ^ (1 << i)];
        }
    }
}

// a <= b <=> b | a
// g[x] = \sum_{ x | i } f[i]
template <class T>
void zeta_div(std::vector<T> &f) {
    int sz = (int)f.size();
    for (int x = 1; x < sz; x++) {
        for (int i = 2 * x; i < sz; i += x) {
            f[x] += f[i];
        }
    }
}

template <class T>
void mebius_div(std::vector<T> &f) {
    int sz = (int)f.size();
    for (int x = sz - 1; x >= 1; x--) {
        for (int i = 2 * x; i < sz; i += x) {
            f[x] -= f[i];
        }
    }
}

int sample() {
    std::vector<int> f = {0, 1, 3, 24, 4, 2, 4, 4, 2, 1};

    // a <= b
    printf("before\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    zeta_div(f);
    printf("transform\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    mebius_div(f);
    printf("return\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    // S \subset T
    printf("before\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    zeta_set(f);
    printf("transform\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    mebius_set(f);
    printf("return\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    // b | a
    printf("before\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    zeta_div(f);
    printf("transform\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");

    mebius_div(f);
    printf("return\n");
    for (int i = 0; i < (int)f.size(); i++) {
        printf("%d ", f[i]);
    }
    printf("\n");
    return 0;
}

/*
    https://yukicoder.me/problems/no/886
*/

template <int Modulus>
struct ModInt {
    long long x;
    ModInt(long long x = 0) : x((x % Modulus + Modulus) % Modulus) {}
    constexpr ModInt &operator+=(const ModInt a) {
        if ((x += a.x) >= Modulus) x -= Modulus;
        return *this;
    }
    constexpr ModInt &operator-=(const ModInt a) {
        if ((x += Modulus - a.x) >= Modulus) x -= Modulus;
        return *this;
    }
    constexpr ModInt &operator*=(const ModInt a) {
        (x *= a.x) %= Modulus;
        return *this;
    }
    constexpr ModInt &operator/=(const ModInt a) { return *this *= a.inverse(); }

    constexpr ModInt operator+(const ModInt a) const { return ModInt(*this) += a.x; }
    constexpr ModInt operator-(const ModInt a) const { return ModInt(*this) -= a.x; }
    constexpr ModInt operator*(const ModInt a) const { return ModInt(*this) *= a.x; }
    constexpr ModInt operator/(const ModInt a) const { return ModInt(*this) /= a.x; }

    friend constexpr std::ostream &operator<<(std::ostream &os, const ModInt<Modulus> &a) { return os << a.x; }
    friend constexpr std::istream &operator>>(std::istream &is, ModInt<Modulus> &a) { return is >> a.x; }

    ModInt inverse() const { // x ^ (-1)
        long long a = x, b = Modulus, p = 1, q = 0;
        while (b) {
            long long d = a / b;
            a -= d * b;
            std::swap(a, b);
            p -= d * q;
            std::swap(p, q);
        }
        return ModInt(p);
    }
    ModInt pow(long long N) { // x ^ N
        ModInt a = 1;
        while (N) {
            if (N & 1) a *= *this;
            *this *= *this;
            N >>= 1;
        }
        return a;
    }
};

using mint = ModInt<1000'000'007>;

int main() {
    int H, W;
    std::cin >> H >> W;

    mint ans = mint(H) * mint(W - 1) + mint(W) * mint(H - 1);

    std::vector<mint> f(H + 1, 0), g(W + 1, 0);
    for (int i = 1; i <= H; i++) {
        f[i] = H - i;
    }
    for (int i = 1; i <= W; i++) {
        g[i] = W - i;
    }
    zeta_div(f);
    zeta_div(g);

    int sz = std::min((int)f.size(), (int)g.size());
    std::vector<mint> h(sz);
    for (int i = 0; i < sz; i++) {
        h[i] = f[i] * g[i];
    }
    mebius_div(h);

    ans += h[1] * 2;
    std::cout << ans << '\n';
}
0