結果
問題 | No.1339 循環小数 |
ユーザー | 👑 obakyan |
提出日時 | 2022-04-14 09:39:50 |
言語 | Lua (LuaJit 2.1.1696795921) |
結果 |
AC
|
実行時間 | 30 ms / 2,000 ms |
コード長 | 2,682 bytes |
コンパイル時間 | 39 ms |
コンパイル使用メモリ | 5,248 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-06 13:44:18 |
合計ジャッジ時間 | 1,529 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 6 ms
5,376 KB |
testcase_04 | AC | 6 ms
5,376 KB |
testcase_05 | AC | 6 ms
5,376 KB |
testcase_06 | AC | 5 ms
5,376 KB |
testcase_07 | AC | 5 ms
5,376 KB |
testcase_08 | AC | 5 ms
5,376 KB |
testcase_09 | AC | 6 ms
5,376 KB |
testcase_10 | AC | 6 ms
5,376 KB |
testcase_11 | AC | 12 ms
5,376 KB |
testcase_12 | AC | 8 ms
5,376 KB |
testcase_13 | AC | 9 ms
5,376 KB |
testcase_14 | AC | 8 ms
5,376 KB |
testcase_15 | AC | 8 ms
5,376 KB |
testcase_16 | AC | 9 ms
5,376 KB |
testcase_17 | AC | 7 ms
5,376 KB |
testcase_18 | AC | 8 ms
5,376 KB |
testcase_19 | AC | 7 ms
5,376 KB |
testcase_20 | AC | 8 ms
5,376 KB |
testcase_21 | AC | 25 ms
5,376 KB |
testcase_22 | AC | 24 ms
5,376 KB |
testcase_23 | AC | 24 ms
5,376 KB |
testcase_24 | AC | 25 ms
5,376 KB |
testcase_25 | AC | 24 ms
5,376 KB |
testcase_26 | AC | 22 ms
5,376 KB |
testcase_27 | AC | 28 ms
5,376 KB |
testcase_28 | AC | 24 ms
5,376 KB |
testcase_29 | AC | 25 ms
5,376 KB |
testcase_30 | AC | 23 ms
5,376 KB |
testcase_31 | AC | 24 ms
5,376 KB |
testcase_32 | AC | 26 ms
5,376 KB |
testcase_33 | AC | 30 ms
5,376 KB |
testcase_34 | AC | 9 ms
5,376 KB |
testcase_35 | AC | 10 ms
5,376 KB |
testcase_36 | AC | 28 ms
5,376 KB |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if allnums[i] then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while primepos <= prime_num and dv <= lim do if x % dv == 0 then local t = {} t.p = dv t.cnt = 1 x = mfl(x / dv) while x % dv == 0 do x = mfl(x / dv) t.cnt = t.cnt + 1 end table.insert(tmp, t) lim = mce(msq(x)) end if primepos == prime_num then break end primepos = primepos + 1 dv = primes[primepos] end if x ~= 1 then local t = {} t.p, t.cnt = x, 1 table.insert(tmp, t) end return tmp end local function getdivisorCore(divisorparts) local t = {} local pat = 1 local len = #divisorparts local allpat = 1 for i = 1, len do allpat = allpat * (1 + divisorparts[i].cnt) end for t_i_pat = 0, allpat - 1 do local div = allpat local i_pat = t_i_pat local ret = 1 for i = 1, len do div = mfl(div / (divisorparts[i].cnt + 1)) local mul = mfl(i_pat / div) i_pat = i_pat % div for j = 1, mul do ret = ret * divisorparts[i].p end end table.insert(t, ret) end table.sort(t) return t end local function getdivisor(x, primes) local dvp = getdivisorparts(x, primes) return getdivisorCore(dvp) end local primes = getprimes(mce(msq(1000000007))) local function modpow(src, pow, mod) local res = 1LL src = src * 1LL while 0 < pow do if pow % 2 == 1 then res = (res * src) % mod pow = pow - 1 end src = (src * src) % mod pow = mfl(pow / 2) end return res end local q = io.read("*n") local function solve(n) while n % 2 == 0 do n = mfl(n / 2) end while n % 5 == 0 do n = mfl(n / 5) end if n == 1 then return 1 end local dvp = getdivisorparts(n, primes) local euler = n * 1LL for i = 1, #dvp do local v = dvp[i].p euler = euler * (v - 1LL) / (v * 1LL) end euler = tostring(euler):gsub("LL", "") euler = tonumber(euler) local dv = getdivisor(euler, primes) for i = 1, #dv do if modpow(10, dv[i], n) == 1LL then return dv[i] end end end for iq = 1, q do local n = io.read("*n") local ans = solve(n) assert(ans) print(ans) end