結果
問題 |
No.811 約数の個数の最大化
|
ユーザー |
|
提出日時 | 2022-04-15 01:44:04 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 188 ms / 2,000 ms |
コード長 | 1,165 bytes |
コンパイル時間 | 219 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 95,620 KB |
最終ジャッジ日時 | 2024-12-24 13:08:39 |
合計ジャッジ時間 | 2,679 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 12 |
ソースコード
def primeset(N): #N以下の素数をsetで求める.エラトステネスの篩O(√Nlog(N)) lsx = [1]*(N+1) for i in range(2,int(-(-N**0.5//1))+1): if lsx[i] == 1: for j in range(i,N//i+1): lsx[j*i] = 0 setprime = set() for i in range(2,N+1): if lsx[i] == 1: setprime.add(i) return setprime def factorization_all_n(n):#n以下の自然数すべてをを素因数分解 lspn = [[] for i in range(n+1)] lsnum = [i for i in range(n+1)] lsp = list(primeset(n)) lsp.sort() for p in lsp: for j in range(1,n//p+1): cnt = 0 while lsnum[p*j]%p==0: lsnum[p*j] //= p cnt += 1 lspn[j*p].append((p,cnt)) return lspn import collections N,K = map(int,input().split()) lspn = factorization_all_n(N+1) np = collections.Counter() for i,j in lspn[N]: np[i] = j yaku = 0 for i in range(2,N): k = 0 for j,k1 in lspn[i]: k += min(np[j],k1) if K > k: continue y = 1 for j,k in lspn[i]: y *= k+1 if yaku < y: ans = i yaku = y print(ans)