結果
| 問題 |
No.1621 Sequence Inversions
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-04-15 15:08:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 212 ms / 3,000 ms |
| コード長 | 3,532 bytes |
| コンパイル時間 | 199 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 81,588 KB |
| 最終ジャッジ日時 | 2024-12-24 20:37:55 |
| 合計ジャッジ時間 | 4,264 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
from collections import deque
MOD = 998244353
class FFT:
def __init__(self, MOD=998244353):
FFT.MOD = MOD
g = self.primitive_root_constexpr()
ig = pow(g, FFT.MOD - 2, FFT.MOD)
FFT.W = [pow(g, (FFT.MOD - 1) >> i, FFT.MOD) for i in range(30)]
FFT.iW = [pow(ig, (FFT.MOD - 1) >> i, FFT.MOD) for i in range(30)]
def primitive_root_constexpr(self):
if FFT.MOD == 998244353:
return 3
elif FFT.MOD == 200003:
return 2
elif FFT.MOD == 167772161:
return 3
elif FFT.MOD == 469762049:
return 3
elif FFT.MOD == 754974721:
return 11
divs = [0] * 20
divs[0] = 2
cnt = 1
x = (FFT.MOD - 1) // 2
while x % 2 == 0:
x //= 2
i = 3
while i * i <= x:
if x % i == 0:
divs[cnt] = i
cnt += 1
while x % i == 0:
x //= i
i += 2
if x > 1:
divs[cnt] = x
cnt += 1
g = 2
while 1:
ok = True
for i in range(cnt):
if pow(g, (FFT.MOD - 1) // divs[i], FFT.MOD) == 1:
ok = False
break
if ok:
return g
g += 1
def fft(self, k, f):
for l in range(k, 0, -1):
d = 1 << l - 1
U = [1]
for i in range(d):
U.append(U[-1] * FFT.W[l] % FFT.MOD)
for i in range(1 << k - l):
for j in range(d):
s = i * 2 * d + j
f[s], f[s + d] = (f[s] + f[s + d]) % FFT.MOD, U[j] * (f[s] - f[s + d]) % FFT.MOD
def ifft(self, k, f):
for l in range(1, k + 1):
d = 1 << l - 1
for i in range(1 << k - l):
u = 1
for j in range(i * 2 * d, (i * 2 + 1) * d):
f[j+d] *= u
f[j], f[j + d] = (f[j] + f[j + d]) % FFT.MOD, (f[j] - f[j + d]) % FFT.MOD
u = u * FFT.iW[l] % FFT.MOD
def convolve(self, A, B):
n0 = len(A) + len(B) - 1
k = (n0).bit_length()
n = 1 << k
A += [0] * (n - len(A))
B += [0] * (n - len(B))
self.fft(k, A)
self.fft(k, B)
A = [a * b % FFT.MOD for a, b in zip(A, B)]
self.ifft(k, A)
inv = pow(n, FFT.MOD - 2, FFT.MOD)
A = [a * inv % FFT.MOD for a in A]
del A[n0:]
return A
n, K = map(int, input().split())
A = list(map(int, input().split()))
cnt = {}
for a in A:
cnt[a] = cnt.get(a, 0) + 1
queue = deque()
tot = 0
for k in sorted(set(A)):
v = cnt[k]
dp = [[0] * (tot + 1)]
dp[0][0] = 1
l = 1
for _ in range(v):
ndp = [[0] * (tot + 1) for _ in range(l + tot)]
for i in range(l):
for j in range(tot + 1):
ndp[i + j][j] += dp[i][j]
ndp[i + j][j] %= MOD
l += tot
for i in range(1, l):
for j in range(1, tot + 1):
ndp[i][j] += ndp[i - 1][j - 1]
ndp[i][j] %= MOD
dp = ndp
tot += v
poly = [sum(ndp[i]) for i in range(l)]
del poly[K+1:]
queue.append(poly)
fft = FFT()
while len(queue) > 1:
A = queue.popleft()
B = queue.popleft()
C = fft.convolve(A, B)
del C[K+1:]
queue.append(C)
A = queue[0]
if len(A) <= K:
print(0)
else:
print(A[K])