結果
問題 | No.1743 Permutation Code |
ユーザー | tnodino |
提出日時 | 2022-04-23 17:21:32 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,515 bytes |
コンパイル時間 | 203 ms |
コンパイル使用メモリ | 13,312 KB |
実行使用メモリ | 102,176 KB |
最終ジャッジ日時 | 2024-06-25 04:30:47 |
合計ジャッジ時間 | 34,081 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
ソースコード
import heapq class mcf_graph(): n=1 pos=[] g=[[]] def __init__(self,N): self.n=N self.pos=[] self.g=[[] for i in range(N)] def add_edge(self,From,To,cap,cost): assert 0<=From and From<self.n assert 0<=To and To<self.n m=len(self.pos) self.pos.append((From,len(self.g[From]))) self.g[From].append({"to":To,"rev":len(self.g[To]),"cap":cap,"cost":cost}) self.g[To].append({"to":From,"rev":len(self.g[From])-1,"cap":0,"cost":-cost}) def get_edge(self,i): m=len(self.pos) assert 0<=i and i<m _e=self.g[self.pos[i][0]][self.pos[i][1]] _re=self.g[_e["to"]][_e["rev"]] return {"from":self.pos[i][0],"to":_e["to"],"cap":_e["cap"]+_re["cap"], "flow":_re["cap"],"cost":_e["cost"]} def edges(self): m=len(self.pos) result=[{} for i in range(m)] for i in range(m): tmp=self.get_edge(i) result[i]["from"]=tmp["from"] result[i]["to"]=tmp["to"] result[i]["cap"]=tmp["cap"] result[i]["flow"]=tmp["flow"] result[i]["cost"]=tmp["cost"] return result def flow(self,s,t,flow_limit=(1<<63)-1): return self.slope(s,t,flow_limit)[-1] def slope(self,s,t,flow_limit=(1<<63)-1): assert 0<=s and s<self.n assert 0<=t and t<self.n assert s!=t ''' variants (C = maxcost): -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge ''' dual=[0 for i in range(self.n)] dist=[0 for i in range(self.n)] pv=[0 for i in range(self.n)] pe=[0 for i in range(self.n)] vis=[False for i in range(self.n)] def dual_ref(): for i in range(self.n): dist[i]=(1<<63)-1 pv[i]=-1 pe[i]=-1 vis[i]=False que=[] heapq.heappush(que,(0,s)) dist[s]=0 while(que): v=heapq.heappop(que)[1] if vis[v]:continue vis[v]=True if v==t:break ''' dist[v] = shortest(s, v) + dual[s] - dual[v] dist[v] >= 0 (all reduced cost are positive) dist[v] <= (n-1)C ''' for i in range(len(self.g[v])): e=self.g[v][i] if vis[e["to"]] or (not(e["cap"])):continue ''' |-dual[e.to]+dual[v]| <= (n-1)C cost <= C - -(n-1)C + 0 = nC ''' cost=e["cost"]-dual[e["to"]]+dual[v] if dist[e["to"]]-dist[v]>cost: dist[e["to"]]=dist[v]+cost pv[e["to"]]=v pe[e["to"]]=i heapq.heappush(que,(dist[e["to"]],e["to"])) if not(vis[t]): return False for v in range(self.n): if not(vis[v]):continue dual[v]-=dist[t]-dist[v] return True flow=0 cost=0 prev_cost=-1 result=[(flow,cost)] while(flow<flow_limit): if not(dual_ref()): break c=flow_limit-flow v=t while(v!=s): c=min(c,self.g[pv[v]][pe[v]]["cap"]) v=pv[v] v=t while(v!=s): self.g[pv[v]][pe[v]]["cap"]-=c self.g[v][self.g[pv[v]][pe[v]]["rev"]]["cap"]+=c v=pv[v] d=-dual[s] flow+=c cost+=c*d if(prev_cost==d): result.pop() result.append((flow,cost)) prev_cost=cost return result from sys import setrecursionlimit setrecursionlimit(10**6) def operator1(C): M = len(C) cnt = 0 for b in range(1,1<<16): cnt += len(bin(b)) - 2 if cnt == M: return b, M, len(bin(b)) - 2 def operator2(C, M): Run = [] cnt = 1 for i in range(1,M): if C[i] == '0': cnt += 1 else: Run.append(cnt) cnt = 1 Run.append(cnt) return Run def operator3(N): Num = [[] for _ in range(N+1)] for i in range(1,N+1): B = bin(i)[2:] cnt = 1 for b in B[1:]: if b == '0': cnt += 1 else: Num[i].append(cnt) cnt = 1 Num[i].append(cnt) return Num C = input() N,M,B = operator1(C) Run = operator2(C, M) M = len(Run) Num = operator3(N) G = mcf_graph(N+M+2) for i in range(M): G.add_edge(0, i+1, 1, 1) for i in range(N): G.add_edge(M+i+1, N+M+1, 1, 1) for i in range(1,N+1): num = Num[i] L = len(num) for j in range(M-L+1): Flg2 = 0 for k in range(L): if num[k] != Run[j+k]: Flg2 = 1 if Flg2: continue for k in range(L): G.add_edge(j+k+1, M+i, 1, 1<<(N-i)) G.flow(0, N+M+1, N) Edges = G.edges() ans = [0] * (N+1) for e in Edges: From = e['from'] To = e['to'] Flow = e['flow'] if From == 0 or To == N + M + 1 or Flow == 0: continue ans[To-M] = From for i in range(N+1): ans[i] = [ans[i], i] ans = ans[1:] ans.sort() for i in range(N): ans[i] = ans[i][1] print(*ans)