結果

問題 No.1743 Permutation Code
ユーザー tnodinotnodino
提出日時 2022-04-23 17:57:24
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
WA  
実行時間 -
コード長 5,712 bytes
コンパイル時間 142 ms
コンパイル使用メモリ 13,568 KB
実行使用メモリ 38,784 KB
最終ジャッジ日時 2024-06-25 05:08:05
合計ジャッジ時間 14,840 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 36 ms
38,784 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 TLE -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import heapq
class mcf_graph():
    n=1
    pos=[]
    g=[[]]
    def __init__(self,N):
        self.n=N
        self.pos=[]
        self.g=[[] for i in range(N)]
    def add_edge(self,From,To,cap,cost):
        assert 0<=From and From<self.n
        assert 0<=To and To<self.n
        m=len(self.pos)
        self.pos.append((From,len(self.g[From])))
        self.g[From].append({"to":To,"rev":len(self.g[To]),"cap":cap,"cost":cost})
        self.g[To].append({"to":From,"rev":len(self.g[From])-1,"cap":0,"cost":-cost})
    def get_edge(self,i):
        m=len(self.pos)
        assert 0<=i and i<m
        _e=self.g[self.pos[i][0]][self.pos[i][1]]
        _re=self.g[_e["to"]][_e["rev"]]
        return {"from":self.pos[i][0],"to":_e["to"],"cap":_e["cap"]+_re["cap"],
        "flow":_re["cap"],"cost":_e["cost"]}
    def edges(self):
        m=len(self.pos)
        result=[{} for i in range(m)]
        for i in range(m):
            tmp=self.get_edge(i)
            result[i]["from"]=tmp["from"]
            result[i]["to"]=tmp["to"]
            result[i]["cap"]=tmp["cap"]
            result[i]["flow"]=tmp["flow"]
            result[i]["cost"]=tmp["cost"]
        return result
    def flow(self,s,t,flow_limit=(1<<63)-1):
        return self.slope(s,t,flow_limit)[-1]
    def slope(self,s,t,flow_limit=(1<<63)-1):
        assert 0<=s and s<self.n
        assert 0<=t and t<self.n
        assert s!=t
        '''
         variants (C = maxcost):
         -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
         reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        '''
        dual=[0 for i in range(self.n)]
        dist=[0 for i in range(self.n)]
        pv=[0 for i in range(self.n)]
        pe=[0 for i in range(self.n)]
        vis=[False for i in range(self.n)]
        def dual_ref():
            for i in range(self.n):
                dist[i]=(1<<63)-1
                pv[i]=-1
                pe[i]=-1
                vis[i]=False
            que=[]
            heapq.heappush(que,(0,s))
            dist[s]=0
            while(que):
                v=heapq.heappop(que)[1]
                if vis[v]:continue
                vis[v]=True
                if v==t:break
                '''
                 dist[v] = shortest(s, v) + dual[s] - dual[v]
                 dist[v] >= 0 (all reduced cost are positive)
                 dist[v] <= (n-1)C
                '''
                for i in range(len(self.g[v])):
                    e=self.g[v][i]
                    if vis[e["to"]] or (not(e["cap"])):continue
                    '''
                     |-dual[e.to]+dual[v]| <= (n-1)C
                     cost <= C - -(n-1)C + 0 = nC
                    '''
                    cost=e["cost"]-dual[e["to"]]+dual[v]
                    if dist[e["to"]]-dist[v]>cost:
                        dist[e["to"]]=dist[v]+cost
                        pv[e["to"]]=v
                        pe[e["to"]]=i
                        heapq.heappush(que,(dist[e["to"]],e["to"]))
            if not(vis[t]):
                return False
            for v in range(self.n):
                if not(vis[v]):continue
                dual[v]-=dist[t]-dist[v]
            return True
        flow=0
        cost=0
        prev_cost=-1
        result=[(flow,cost)]
        while(flow<flow_limit):
            if not(dual_ref()):
                break
            c=flow_limit-flow
            v=t
            while(v!=s):
                c=min(c,self.g[pv[v]][pe[v]]["cap"])
                v=pv[v]
            v=t
            while(v!=s):
                self.g[pv[v]][pe[v]]["cap"]-=c
                self.g[v][self.g[pv[v]][pe[v]]["rev"]]["cap"]+=c
                v=pv[v]
            d=-dual[s]
            flow+=c
            cost+=c*d
            if(prev_cost==d):
                result.pop()
            result.append((flow,cost))
            prev_cost=cost
        return result

C = input()
M = len(C)
cnt = 0
for b in range(1,1<<16):
    cnt += len(bin(b)) - 2
    if cnt == M:
        N = b
        len(bin(b)) - 2
        break
Run = []
cnt = 1
for i in range(1,M):
    if C[i] == '0':
        cnt += 1
    else:
        Run.append(cnt)
        cnt = 1
Run.append(cnt)
M = len(Run)
Num = [[] for _ in range(N+1)]
for i in range(1,N+1):
    B = bin(i)[2:]
    cnt = 1
    for b in B[1:]:
        if b == '0':
            cnt += 1
        else:
            Num[i].append(cnt)
            cnt = 1
    Num[i].append(cnt)
cnt = 0
for i in range(1,N+1):
    c = Num[i]
    L = len(c)
    for j in range(M-L+1):
        Flg = 0
        for k in range(L):
            if c[k] != Run[j+k]:
                Flg = 1
        if Flg:
            continue
        cnt += 1
G = mcf_graph(N+cnt+2)
for i in range(N):
    G.add_edge(0, i+1, 1, 1)
Y = [[] for _ in range(M)]
cnt = N
Dic = {}
for i in range(1,N+1):
    c = Num[i]
    L = len(c)
    for j in range(M-L+1):
        Flg = 0
        for k in range(L):
            if c[k] != Run[j+k]:
                Flg = 1
        if Flg:
            continue
        cnt += 1
        G.add_edge(i, cnt, 1, 1)
        Dic[cnt] = j
        for k in range(L):
            Y[j+k].append(cnt)
for i in range(M):
    for j in range(len(Y[i])-1):
        G.add_edge(Y[i][j], Y[i][j+1], 1, 1)
Flg = [0] * (cnt+1)
for i in range(M):
    if not Y[i] or Flg[Y[i][-1]]:
        continue
    G.add_edge(Y[i][-1], cnt+1, 1, 1)
    Flg[Y[i][-1]] = 1
G.flow(0, cnt+1, N)
Edges = G.edges()
ans = [0] * (N+1)
for e in Edges:
    From = e['from']
    To = e['to']
    Flow = e['flow']
    if 1 <= From <= N and Flow:
        ans[From] = Dic[To]
for i in range(N+1):
    ans[i] = [ans[i], i]
ans = ans[1:]
ans.sort()
for i in range(N):
    ans[i] = ans[i][1]
print(*ans)
0