結果
問題 | No.1918 Simple Math ? |
ユーザー | 👑 emthrm |
提出日時 | 2022-04-30 01:47:25 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,582 ms / 2,000 ms |
コード長 | 5,550 bytes |
コンパイル時間 | 1,992 ms |
コンパイル使用メモリ | 206,016 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-29 07:42:52 |
合計ジャッジ時間 | 19,058 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 55 ms
6,816 KB |
testcase_01 | AC | 7 ms
6,940 KB |
testcase_02 | AC | 8 ms
6,940 KB |
testcase_03 | AC | 6 ms
6,940 KB |
testcase_04 | AC | 9 ms
6,940 KB |
testcase_05 | AC | 9 ms
6,944 KB |
testcase_06 | AC | 153 ms
6,940 KB |
testcase_07 | AC | 238 ms
6,940 KB |
testcase_08 | AC | 119 ms
6,940 KB |
testcase_09 | AC | 58 ms
6,940 KB |
testcase_10 | AC | 136 ms
6,940 KB |
testcase_11 | AC | 12 ms
6,940 KB |
testcase_12 | AC | 187 ms
6,940 KB |
testcase_13 | AC | 114 ms
6,940 KB |
testcase_14 | AC | 83 ms
6,940 KB |
testcase_15 | AC | 37 ms
6,944 KB |
testcase_16 | AC | 640 ms
6,944 KB |
testcase_17 | AC | 652 ms
6,944 KB |
testcase_18 | AC | 925 ms
6,940 KB |
testcase_19 | AC | 998 ms
6,940 KB |
testcase_20 | AC | 779 ms
6,940 KB |
testcase_21 | AC | 1,449 ms
6,940 KB |
testcase_22 | AC | 1,352 ms
6,940 KB |
testcase_23 | AC | 1,582 ms
6,940 KB |
testcase_24 | AC | 1,328 ms
6,944 KB |
testcase_25 | AC | 1,459 ms
6,944 KB |
testcase_26 | AC | 515 ms
6,944 KB |
testcase_27 | AC | 1,026 ms
6,944 KB |
testcase_28 | AC | 983 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 1,158 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 2 ms
6,940 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int v; MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(const int divisor) { assert(divisor == M); } static void init(const int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(const int n, const bool init = false) { // assert(0 <= n && n < M && std::__gcd(n, M) == 1); static std::vector<MInt> inverse{0, 1}; const int prev = inverse.size(); if (n < prev) { return inverse[n]; } else if (init) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * (M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector<MInt> factorial{1}; const int prev = factorial.size(); if (n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector<MInt> f_inv{1}; const int prev = f_inv.size(); if (n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) return 0; return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if ((v += x.v) >= M) v -= M; return *this; } MInt& operator-=(const MInt& x) { if ((v += M - x.v) >= M) v -= M; return *this; } MInt& operator*=(const MInt& x) { v = static_cast<unsigned long long>(v) * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } bool operator==(const MInt& x) const { return v == x.v; } bool operator!=(const MInt& x) const { return v != x.v; } bool operator<(const MInt& x) const { return v < x.v; } bool operator<=(const MInt& x) const { return v <= x.v; } bool operator>(const MInt& x) const { return v > x.v; } bool operator>=(const MInt& x) const { return v >= x.v; } MInt& operator++() { if (++v == M) v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(v ? M - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt<MOD>; ll sq(const ll x) { ll lb = 1, ub = min(x, 1000000000LL) + 1; while (ub - lb > 1) { const ll mid = (lb + ub) / 2; (mid * mid <= x ? lb : ub) = mid; } return lb; } void solve() { int a; ll n; cin >> a >> n; const ll m = sq(a * n); ModInt ans = ModInt(m) * n - (ModInt(m) * (m + 1) * (m * 2 + 1) / 6 - m) / a; REP(i, a) ans += ModInt((1LL * i * i + a - 1) % a) * (m / a + int(m % a >= i) - int(i == 0)) / a; cout << ans << '\n'; } int main() { int t; cin >> t; while (t--) solve(); return 0; }