結果
問題 | No.1964 sum = length |
ユーザー | MtSaka |
提出日時 | 2022-05-01 22:37:26 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 15,846 bytes |
コンパイル時間 | 3,093 ms |
コンパイル使用メモリ | 214,352 KB |
最終ジャッジ日時 | 2025-01-29 01:25:28 |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 |
ソースコード
#line 1 "library/template/template.hpp" //#pragma GCC target("avx") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #define overload4(a,b,c,d,e,...) e #define overload3(a,b,c,d,...) d #define rep1(a) for(ll i=0;i<(ll)(a);i++) #define rep2(i,a) for(ll i=0;i<(ll)(a);i++) #define rep3(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++) #define rep4(i,a,b,c) for(ll i=(ll)(a);i<(ll)(b);i+=(ll)(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(a) for(ll i=(ll)(a)-1;i>=0;i--) #define rrep2(i,a) for(ll i=(ll)(a)-1;i>=0;i--) #define rrep3(i,a,b) for(ll i=(ll)(b)-1;i>=(ll)(a);i--) #define rrep(...) overload3(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__) #define fore(...) for (auto&& __VA_ARGS__) #define all1(i) begin(i),end(i) #define all2(i,a) begin(i),begin(i)+a #define all3(i,a,b) begin(i)+a,begin(i)+b #define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__) #define rall(n) (n).rbegin(),(n).rend() #define INT(...) int __VA_ARGS__;scan(__VA_ARGS__) #define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__) #define STR(...) string __VA_ARGS__;scan(__VA_ARGS__) #define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__) #define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__) #define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__) #define pb push_back #define eb emplace_back #define END(...) {print(__VA_ARGS__);return;} using namespace std; using ll=long long; using ull=unsigned long long; using ld=long double; using vl=vector<ll>; using vi=vector<int>; using vs=vector<string>; using vc=vector<char>; using vvl=vector<vl>; using pi=pair<int,int>; using pl=pair<ll,ll>; using vvc=vector<vc>; using vd=vector<double>; using vp=vector<pl>; using vb=vector<bool>; const int dx[8]={1,0,-1,0,1,-1,-1,1}; const int dy[8]={0,1,0,-1,1,1,-1,-1}; const ll MOD=1000000007; const ll mod=998244353; const ld EPS=1e-8; const ld PI=3.1415926535897932384626; template<typename T,typename U> ostream &operator<<(ostream&os,const pair<T,U>&p){os<<p.first<<" "<<p.second;return os;} template<typename T,typename U> istream &operator>>(istream&is,pair<T,U>&p){is>>p.first>>p.second;return is;} template<typename T> ostream &operator<<(ostream&os,const vector<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;} template<typename T> istream &operator>>(istream&is,vector<T>&v){for(T &in:v){is>>in;}return is;} void scan(){} template<class Head,class... Tail> void scan(Head&head,Tail&... tail){cin>>head;scan(tail...);} template<class T> void print(const T &t){cout<<t<<'\n';} template<class Head, class... Tail> void print(const Head &head, const Tail &... tail){cout<<head<<' ';print(tail...);} template<class... T> void fin(const T &... a){print(a...);exit(0);} template<typename T,typename U> inline bool chmax(T&a,U b){return a<b&&(a=b,true);} template<typename T,typename U> inline bool chmin(T&a,U b){return a>b&&(a=b,true);} template<typename T> class infinity{ public: static const T MAX=numeric_limits<T>::max(); static const T MIN=numeric_limits<T>::min(); static const T value=numeric_limits<T>::max()/2; static const T mvalue=numeric_limits<T>::min()/2; }; #if __cplusplus <= 201402L template<class T>const T infinity<T>::value; template<class T>const T infinity<T>::mvalue; template<class T>const T infinity<T>::MAX; template<class T>const T infinity<T>::MIN; #endif template<typename T>const T INF=infinity<T>::value; const long long inf=INF<ll>; inline int popcnt(ull x){ #if __cplusplus>=202002L return popcount(x); #endif x=(x&0x5555555555555555)+((x>>1)&0x5555555555555555);x=(x&0x3333333333333333)+((x>>2)&0x3333333333333333);x=(x&0x0f0f0f0f0f0f0f0f)+((x>>4)&0x0f0f0f0f0f0f0f0f);x=(x&0x00ff00ff00ff00ff)+((x>>8)&0x00ff00ff00ff00ff);x=(x&0x0000ffff0000ffff)+((x>>16)&0x0000ffff0000ffff);return (x&0x00000000ffffffff)+((x>>32)&0x00000000ffffffff); } template<typename T,typename=void> struct is_specialize:false_type{}; template<typename T> struct is_specialize<T,typename conditional<false,typename T::iterator, void>::type>:true_type{}; template<typename T> struct is_specialize<T,typename conditional<false,decltype(T::first),void>::type>:true_type{}; template<typename T> struct is_specialize<T,enable_if_t<is_integral<T>::value,void>>:true_type{}; void dump(const char&t){cerr<<t;} void dump(const string&t){cerr<<t;} void dump(const bool&t){cerr<<(t?"true":"false");} template <typename T,enable_if_t<!is_specialize<T>::value,nullptr_t> =nullptr> void dump(const T&t){cerr<<t;} template<typename T> void dump(const T&t,enable_if_t<is_integral<T>::value>* =nullptr){string tmp;if(t==infinity<T>::value||t==infinity<T>::MAX)tmp="inf";if(t==infinity<T>::mvalue||t==infinity<T>::MIN)tmp="-inf";if(tmp.empty())tmp=to_string(t);cerr<<tmp;} template <typename T> void dump(const T&t,enable_if_t<!is_void<typename T::iterator>::value>* =nullptr){cerr<<"{";for(auto it=t.begin();it!=t.end();){dump(*it);cerr<<(++it==t.end()?"":",");}cerr<<"}";} template<typename T,typename U> void dump(const pair<T,U>&t){cerr<<"(";dump(t.first);cerr<<",";dump(t.second);cerr<<")";} void trace(){cerr<<endl;} template<typename Head,typename... Tail> void trace(Head&&head,Tail&&... tail){dump(head);if(sizeof...(tail))cerr<<",";trace(forward<Tail>(tail)...);} #ifdef ONLINE_JUDGE #define debug(...) (void(0)) #else #define debug(...) do{cerr<<#__VA_ARGS__<<"=";trace(__VA_ARGS__);}while(0) #endif struct IOSetup{IOSetup(){cin.tie(nullptr);ios::sync_with_stdio(false);cout.tie(0);cout<<fixed<<setprecision(12);cerr<<fixed<<setprecision(12);}}; /** * @brief Template(テンプレート) */ #line 2 "library/Math/modular/modint.hpp" template<long long m> struct modint{ long long x; constexpr modint():x(0){} constexpr modint(long long y):x(y>=0?y%m:(m-(-y)%m)%m){} modint inv()const{ long long a=x,b=m,u=1,v=0,t; while(b){ t=a/b; swap(a-=t*b,b); swap(u-=t*v,v); } return modint(u); } modint &operator+=(const modint&p){if((x+=p.x)>=m)x-=m;return *this;} modint &operator-=(const modint&p){if((x+=m-p.x)>=m)x-=m;return *this;} modint &operator*=(const modint&p){x=x*p.x;if(x>=m)x%=m;return *this;} modint &operator/=(const modint&p){*this*=p.inv();return *this;} friend modint operator+(const modint&l,const modint&r){return modint(l)+=r;} friend modint operator-(const modint&l,const modint&r){return modint(l)-=r;} friend modint operator*(const modint&l,const modint&r){return modint(l)*=r;} friend modint operator/(const modint&l,const modint&r){return modint(l)/=r;} modint operator-()const{return modint(-x);} modint operator+()const{return *this;} modint &operator++(){x++;if(x==m)x=0;return *this;} modint &operator--(){if(x==0)x=m;x--;return *this;} modint operator++(int){modint ret(*this);++*this;return ret;} modint operator--(int){modint ret(*this);--*this;return ret;} friend bool operator==(const modint&l,const modint&r){return l.x==r.x;} friend bool operator!=(const modint&l,const modint&r){return l.x!=r.x;} modint pow(long long n)const{ modint ret(1),mul(x); while(n){ if(n&1)ret*=mul; mul*=mul; n>>=1; } return ret; } friend ostream &operator<<(ostream &os,const modint&p) { return os<<p.x; } friend istream &operator>>(istream &is, modint &a) { long long t; is>>t; a=modint<m>(t); return (is); } static long long get_mod(){return m;} }; /** * @brief modint */ #line 3 "library/Math/convolution/ntt.hpp" template<long long m> struct NTT{ using mint=modint<m>; static modint<m> g; static int limit; static vector<modint<m>>root,inv_root; static mint primitive_root(const long long&mo){ if(mo==167772161)return mint(3); if(mo==469762049)return mint(3); if(mo==754974721)return mint(11); if(mo==998244353)return mint(3); if(mo==1224736769)return mint(3); return mint(0); } static void init(){ if(root.empty()){ g=primitive_root(m); long long now=m-1; while(!(now&1))now>>=1,limit++; root.resize(limit+1,1),inv_root.resize(limit+1,1); root[limit]=g.pow(now); inv_root[limit]/=root[limit]; for(int i=limit-1;i>=0;i--){ root[i]=root[i+1]*root[i+1]; inv_root[i]=inv_root[i+1]*inv_root[i+1]; } } } NTT(){}; static void dft(vector<mint>&a,int inv){ init(); const int sz=a.size(); if(sz==1)return; const int mask=sz-1; vector<mint>b(sz); for(int i=sz>>1;i>=1;i>>=1){ int e=__builtin_ffsll(sz/i)-1; mint w=1,z=(inv==1?root[e]:inv_root[e]); for(int j=0;j<sz;j+=i){ for(int k=0;k<i;k++)b[j+k]=a[((j<<1)&mask)+k]+w*a[(((j<<1)+i)&mask)+k]; w*=z; } swap(a,b); } } static vector<mint>multiply(vector<mint>a,vector<mint>b){ int sz=1; const int mxsiz=a.size()+b.size()-1; while(sz<mxsiz)sz<<=1; a.resize(sz),b.resize(sz); dft(a,1),dft(b,1); for(int i=0;i<sz;i++)a[i]*=b[i]; dft(a,-1); a.resize(mxsiz); mint iz=mint(sz).inv(); for(int i=0;i<mxsiz;i++)a[i]*=iz; return a; } template<typename T,std::enable_if_t<is_integral<T>::value>* = nullptr> static vector<T>multiply(const vector<T>&a,const vector<T>&b){ using mint=modint<m>; vector<mint>a2(a.size()),b2(b.size()); for(int i=0;i<(int)a.size();i++)a2[i]=a[i]; for(int i=0;i<(int)b.size();i++)b2[i]=b[i]; auto c2=multiply(a2,b2); vector<T>c(c2.size()); for(int i=0;i<(int)c.size();i++)c[i]=c2[i].x; return c; } }; template<long long m> int NTT<m>::limit=0; template<long long m> vector<modint<m>>NTT<m>::root=vector<modint<m>>(); template<long long m> vector<modint<m>>NTT<m>::inv_root=vector<modint<m>>(); template<long long m> modint<m>NTT<m>::g=modint<m>(); /** * @brief Number Theoretic Transform(数論変換) */ #line 3 "library/Math/fps/fps.hpp" template<long long Mod> struct FPS:vector<modint<Mod>>{ using mint=modint<Mod>; using vector<mint>::vector; using vector<mint>::operator=; void shrink(){while(!(*this).empty()&&(*this).back()==mint(0))(*this).pop_back();} FPS inv(int d=-1)const{ NTT<Mod>ntt; const int n=(*this).size(); if(d==-1)d=n; FPS res{(*this)[0].inv()}; for(int m=1;m<d;m<<=1){ FPS f((*this).begin(),(*this).begin()+min(n,2*m)); FPS g(res); f.resize(2*m),g.resize(2*m); ntt.dft(f,1),ntt.dft(g,1); for(int i=0;i<2*m;i++)f[i]*=g[i]; ntt.dft(f,-1); f.erase(f.begin(),f.begin()+m); f.resize(2*m);ntt.dft(f,1); for(int i=0;i<2*m;i++)f[i]*=g[i]; ntt.dft(f,-1); mint iz=mint(2*m).inv();iz*=-iz; for(int i=0;i<m;i++)f[i]*=iz; res.insert(res.end(),f.begin(),f.begin()+m); } res.resize(d); return res; } FPS operator+(const mint&r)const{return FPS(*this)+=r;} FPS operator-(const mint&r)const{return FPS(*this)-=r;} FPS operator*(const mint&r)const{return FPS(*this)*=r;} FPS operator/(const mint&r)const{return FPS(*this)/=r;} FPS operator+(const FPS&r)const{return FPS(*this)+=r;} FPS operator-(const FPS&r)const{return FPS(*this)-=r;} FPS operator<<(const int&d)const{return FPS(*this)<<=d;} FPS operator>>(const int&d)const{return FPS(*this)>>=d;} FPS operator*(const FPS&r)const{return FPS(*this)*=r;} FPS operator/(const FPS&r)const{return FPS(*this)/=r;} FPS operator%(const FPS&r)const{return FPS(*this)%=r;} FPS operator-()const{ FPS ret(*this); for(auto &i:ret)i=-i; return ret; } FPS &operator+=(const mint&r){ if((*this).empty())(*this).resize(1); (*this)[0]+=r; return *this; } FPS &operator-=(const mint&r){ if((*this).empty())(*this).resize(1); (*this)[0]-=r; return *this; } FPS &operator*=(const mint&r){ for(auto &i:*this)i*=r; return *this; } FPS &operator/=(const mint&r){ (*this)*=r.inv(); return *this; } FPS &operator+=(const FPS&r){ const int n=(*this).size(),m=r.size(); (*this).resize(max(n,m)); for(int i=0;i<m;i++)(*this)[i]+=r[i]; return *this; } FPS &operator-=(const FPS&r){ const int n=(*this).size(),m=r.size(); (*this).resize(max(n,m)); for(int i=0;i<m;i++)(*this)[i]-=r[i]; return *this; } FPS &operator<<=(const long long&d){ (*this).insert((*this).begin(),d,mint(0)); return *this; } FPS &operator>>=(const long long&d){ (*this).erase((*this).begin(),(*this).begin()+d); return *this; } FPS &operator*=(const FPS&r){ (*this)=NTT<Mod>::multiply((*this),r); return *this; } FPS &operator/=(FPS r){ const int n=(*this).size(),m=r.size(); if(n<m){ (*this).clear(); return *this; } const int sz=n-m+1; reverse((*this).begin(),(*this).end()); reverse(r.begin(),r.end()); (*this).resize(sz); (*this)*=r.inv(sz); (*this).resize(sz); reverse((*this).begin(),(*this).end()); return (*this); } FPS &operator%=(const FPS&r){ const int n=(*this).size(),m=r.size(); if(n<m)return (*this); (*this)-=(*this)/r*r; (*this).resize(m-1); shrink(); return (*this); } pair<FPS,FPS>div_mod(const FPS&r){ FPS p=*this/r,q=*this-p*r; q.shrink(); return {p,q}; } mint operator()(const mint&x)const{ mint ret(0),w(1); for(auto &e:*this){ ret+=e*w; w*=x; } return ret; } FPS diff()const{ const int n=(*this).size(); FPS ret(max(0,n-1)); for(int i=1;i<n;i++)ret[i-1]=(*this)[i]*mint(i); return ret; } FPS integral()const{ const int n=(*this).size(); vector<mint>inv(n+1); inv[1]=mint(1); for(int i=2;i<=n;i++)inv[i]=-inv[Mod%i]*mint(Mod/i); FPS ret(n+1); for(int i=0;i<n;i++)ret[i+1]=(*this)[i]*inv[i+1]; return ret; } FPS log(int d=-1)const{ const int n=(*this).size(); if(d==-1)d=n; FPS res=diff()*inv(d); res.resize(d-1); return res.integral(); } FPS exp(int d=-1)const{ const int n=(*this).size(); if(d==-1)d=n; FPS f={mint(1)+(*this)[0],(*this)[1]},res{1,1<n?(*this)[1]:0}; for(int m=2;m<d;m<<=1){ f.insert(f.end(),(*this).begin()+min(m,n),(*this).begin()+min(n,2*m)); if((int)f.size()<2*m)f.resize(2*m); res=res*(f-res.log(2*m)); res.resize(2*m); } res.resize(d); return res; } FPS pow(long long k,int d=-1)const{ const int n=(*this).size(); if(d==-1)d=n; for(int i=0;i<n;i++){ if((*this)[i]!=mint()){ mint rev=(*this)[i].inv(); if(i*k>d)return FPS(d,mint(0)); FPS ret=(((*this*rev)>>i).log(d)*k).exp(d)*((*this)[i].pow(k)); ret=(ret<<(i*k)); ret.resize(d); return ret; } } return FPS(d,mint(0)); } FPS sqrt(int d=-1,const function<mint(mint)>&get_sqrt=[](mint){return mint(1);})const{ const int n=(*this).size(); if(d==-1)d=n; if((*this)[0]==mint(0)){ for(int i=1;i<n;i++){ if((*this)[i]!=mint(0)){ if(i&1)return {}; if(d-i/2<=0)break; auto ret=(*this>>i).sqrt(d-i/2,get_sqrt); if(ret.empty())return {}; ret=ret<<(i/2); if((int)ret.size()<d)ret.resize(d); return ret; } } return FPS(d); } auto sqr=get_sqrt((*this)[0]); if(sqr*sqr!=(*this)[0])return {}; FPS ret{sqr}; mint inv2=mint(2).inv(); FPS f={(*this)[0]}; for(int i=1;i<d;i<<=1){ if(i<n)f.insert(f.end(),(*this).begin()+i,(*this).begin()+min(n,i<<1)); if((int)f.size()<(i<<1))f.resize(i<<1); ret=(ret+f*ret.inv(i<<1))*inv2; } ret.resize(d); return ret; } }; /** * @brief Formal Power Series(形式的冪級数) */ #line 3 "code.cpp" int main(){ LL(n); FPS<mod>cnt(2*n); ll now=1; ll tmp=0; ll nxt=10; while(now-tmp<=2*n-1){ cnt[now-tmp]+=1; now++; if(now==nxt){ tmp++; nxt*=10; } } cnt=cnt.pow(n); print(cnt[2*n-1]); }