結果
問題 | No.1933 ABC String |
ユーザー | jell |
提出日時 | 2022-05-07 00:01:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 55,844 bytes |
コンパイル時間 | 2,997 ms |
コンパイル使用メモリ | 222,676 KB |
実行使用メモリ | 21,700 KB |
最終ジャッジ日時 | 2024-07-06 03:37:43 |
合計ジャッジ時間 | 7,071 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,752 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 124 ms
21,420 KB |
testcase_14 | AC | 91 ms
13,936 KB |
testcase_15 | AC | 78 ms
14,208 KB |
testcase_16 | AC | 105 ms
19,652 KB |
testcase_17 | AC | 94 ms
17,064 KB |
testcase_18 | AC | 62 ms
12,740 KB |
testcase_19 | AC | 94 ms
15,964 KB |
testcase_20 | AC | 150 ms
21,700 KB |
testcase_21 | AC | 75 ms
13,812 KB |
testcase_22 | AC | 62 ms
13,928 KB |
testcase_23 | TLE | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
ソースコード
#line 2 "Library\\src\\algebra\\modint.hpp" /** * @file modint.hpp * @brief Modular Arithmetic */ #include <cassert> #include <iostream> #include <vector> #line 2 "Library\\src\\number_theory\\sqrt_mod.hpp" /** * @file sqrt_mod.hpp * @brief Tonelli-Shanks Algorithm */ #line 2 "Library\\src\\number_theory\\pow_mod.hpp" /** * @file mod_pow.hpp * @brief Modular Exponentiation */ #line 9 "Library\\src\\number_theory\\pow_mod.hpp" #line 2 "Library\\src\\utils\\sfinae.hpp" /** * @file sfinae.hpp * @brief SFINAE */ #include <cstdint> #include <iterator> #include <type_traits> #ifndef __INT128_DEFINED__ #ifdef __SIZEOF_INT128__ #define __INT128_DEFINED__ 1 #else #define __INT128_DEFINED__ 0 #endif #endif namespace std { #if __INT128_DEFINED__ template <> struct make_signed<__uint128_t> { using type = __int128_t; }; template <> struct make_signed<__int128_t> { using type = __int128_t; }; template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; }; template <> struct make_unsigned<__int128_t> { using type = __uint128_t; }; template <> struct is_signed<__uint128_t> : std::false_type {}; template <> struct is_signed<__int128_t> : std::true_type {}; template <> struct is_unsigned<__uint128_t> : std::true_type {}; template <> struct is_unsigned<__int128_t> : std::false_type {}; #endif } // namespace std namespace workspace { template <class Tp, class... Args> struct variadic_front { using type = Tp; }; template <class... Args> struct variadic_back; template <class Tp> struct variadic_back<Tp> { using type = Tp; }; template <class Tp, class... Args> struct variadic_back<Tp, Args...> { using type = typename variadic_back<Args...>::type; }; template <class type, template <class> class trait> using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type; /** * @brief Return type of subscripting ( @c [] ) access. */ template <class _Tp> using subscripted_type = typename std::decay<decltype(std::declval<_Tp&>()[0])>::type; template <class Container> using element_type = typename std::decay<decltype(*std::begin( std::declval<Container&>()))>::type; template <class _Tp, class = void> struct has_begin : std::false_type {}; template <class _Tp> struct has_begin< _Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>> : std::true_type { using type = decltype(std::begin(std::declval<const _Tp&>())); }; template <class _Tp, class = void> struct has_size : std::false_type {}; template <class _Tp> struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>> : std::true_type {}; template <class _Tp, class = void> struct has_resize : std::false_type {}; template <class _Tp> struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize( std::declval<size_t>()))>> : std::true_type {}; template <class _Tp, class = void> struct has_mod : std::false_type {}; template <class _Tp> struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {}; template <class _Tp, class = void> struct is_integral_ext : std::false_type {}; template <class _Tp> struct is_integral_ext< _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type> : std::true_type {}; #if __INT128_DEFINED__ template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #endif #if __cplusplus >= 201402 template <class _Tp> constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value; #endif template <typename _Tp, typename = void> struct multiplicable_uint { using type = uint_least32_t; }; template <typename _Tp> struct multiplicable_uint< _Tp, typename std::enable_if<(2 < sizeof(_Tp)) && (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> { using type = uint_least64_t; }; #if __INT128_DEFINED__ template <typename _Tp> struct multiplicable_uint<_Tp, typename std::enable_if<(4 < sizeof(_Tp))>::type> { using type = __uint128_t; }; #endif template <typename _Tp> struct multiplicable_int { using type = typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type; }; template <typename _Tp> struct multiplicable { using type = std::conditional_t< is_integral_ext<_Tp>::value, std::conditional_t<std::is_signed<_Tp>::value, typename multiplicable_int<_Tp>::type, typename multiplicable_uint<_Tp>::type>, _Tp>; }; template <class> struct first_arg { using type = void; }; template <class _R, class _Tp, class... _Args> struct first_arg<_R(_Tp, _Args...)> { using type = _Tp; }; template <class _R, class _Tp, class... _Args> struct first_arg<_R (*)(_Tp, _Args...)> { using type = _Tp; }; template <class _G, class _R, class _Tp, class... _Args> struct first_arg<_R (_G::*)(_Tp, _Args...)> { using type = _Tp; }; template <class _G, class _R, class _Tp, class... _Args> struct first_arg<_R (_G::*)(_Tp, _Args...) const> { using type = _Tp; }; template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {}; template <class _Tp> struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>> : first_arg<decltype(&_Tp::operator())> {}; template <class _Container, class = void> struct get_dimension { static constexpr size_t value = 0; }; template <class _Container> struct get_dimension<_Container, std::enable_if_t<has_begin<_Container>::value>> { static constexpr size_t value = 1 + get_dimension<typename std::iterator_traits< typename has_begin<_Container>::type>::value_type>::value; }; } // namespace workspace #line 11 "Library\\src\\number_theory\\pow_mod.hpp" namespace workspace { /** * @brief Compile time modular exponentiation. * * @param __x * @param __n Exponent * @param __mod Modulus * @return */ template <class _Tp> constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> pow_mod( _Tp __x, _Tp __n, _Tp __mod) noexcept { assert(__mod > 0); using mul_type = typename multiplicable_uint<_Tp>::type; if ((__x %= __mod) < 0) __x += __mod; mul_type __y{1}; while (__n) { if (__n & 1) (__y *= __x) %= __mod; __x = (mul_type)__x * __x % __mod; __n >>= 1; } return __y; }; } // namespace workspace #line 10 "Library\\src\\number_theory\\sqrt_mod.hpp" namespace workspace { /** * @brief Compile time modular square root. * * @param __x * @param __mod Modulus * @return One if it exists. Otherwise -1. */ template <class _Tp> constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod( _Tp __x, _Tp __mod) noexcept { assert(__mod > 0); using mul_type = typename multiplicable_uint<_Tp>::type; if ((__x %= __mod) < 0) __x += __mod; if (!__x) return 0; if (__mod == 2) return __x; if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1; _Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z; mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2; while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b; __b = pow_mod<_Tp>(__b, __q, __mod); _Tp __shift = 0; for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod; __r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) { auto __bsf = __z; for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod; while (++__shift != __bsf) (__b *= __b) %= __mod; (__a *= __b) %= __mod; } return __a; }; } // namespace workspace #line 14 "Library\\src\\algebra\\modint.hpp" namespace workspace { namespace _modint_impl { template <auto _Mod, unsigned _Storage> struct modint { static_assert(is_integral_ext<decltype(_Mod)>::value, "_Mod must be integral type."); using mod_type = std::make_signed_t<typename std::conditional< 0 < _Mod, std::add_const_t<decltype(_Mod)>, decltype(_Mod)>::type>; using value_type = std::decay_t<mod_type>; using reference = value_type &; using const_reference = value_type const &; using mul_type = typename multiplicable_uint<value_type>::type; static mod_type mod; // Modulus. static unsigned storage; private: template <class _Tp> using modint_if = std::enable_if_t<is_integral_ext<_Tp>::value, modint>; value_type value = 0; // within [0, mod). struct direct_ctor_t {}; constexpr static direct_ctor_t direct_ctor_tag{}; // Direct constructor template <class _Tp> constexpr modint(_Tp __n, direct_ctor_t) noexcept : value(__n) {} public: constexpr modint() noexcept = default; template <class _Tp, class = std::enable_if_t< std::is_convertible<_Tp, value_type>::value>> constexpr modint(_Tp __n) noexcept : value((__n %= mod) < _Tp(0) ? static_cast<value_type>(__n) + mod : static_cast<value_type>(__n)) {} constexpr modint(bool __n) noexcept : value(__n) {} constexpr operator reference() noexcept { return value; } constexpr operator const_reference() const noexcept { return value; } // unary operators {{ constexpr modint operator++(int) noexcept { modint __t{*this}; operator++(); return __t; } constexpr modint operator--(int) noexcept { modint __t{*this}; operator--(); return __t; } constexpr modint &operator++() noexcept { if (++value == mod) value = 0; return *this; } constexpr modint &operator--() noexcept { if (!value) value = mod - 1; else --value; return *this; } constexpr modint operator+() const noexcept { return *this; } constexpr modint operator-() const noexcept { return {value ? mod - value : 0, direct_ctor_tag}; } // }} unary operators // operator+= {{ constexpr modint &operator+=(const modint &__x) noexcept { if ((value += __x.value) >= mod) value -= mod; return *this; } template <class _Tp> constexpr modint_if<_Tp> &operator+=(_Tp __x) noexcept { __x %= mod, value += __x; if (value < 0) value += mod; else if (value >= mod) value -= mod; return *this; } // }} operator+= // operator+ {{ template <class _Tp> constexpr modint_if<_Tp> operator+(_Tp const &__x) const noexcept { return modint{*this} += __x; } constexpr modint operator+(modint __x) const noexcept { return __x += *this; } template <class _Tp> constexpr friend modint_if<_Tp> operator+(_Tp const &__x, modint __y) noexcept { return __y += __x; } // }} operator+ // operator-= {{ constexpr modint &operator-=(const modint &__x) noexcept { if ((value -= __x.value) < 0) value += mod; return *this; } template <class _Tp> constexpr modint_if<_Tp> &operator-=(_Tp __x) noexcept { __x %= mod, value -= __x; if (value < 0) value += mod; else if (value >= mod) value -= mod; return *this; } // }} operator-= // operator- {{ template <class _Tp> constexpr modint_if<_Tp> operator-(_Tp const &__x) const noexcept { return modint{*this} -= __x; } constexpr modint operator-(const modint &__x) const noexcept { return modint{*this} -= __x; } template <class _Tp> constexpr friend modint_if<_Tp> operator-(_Tp __x, const modint &__y) noexcept { if (((__x -= __y.value) %= mod) < 0) __x += mod; return {__x, direct_ctor_tag}; } // }} operator- // operator*= {{ constexpr modint &operator*=(const modint &__x) noexcept { value = static_cast<value_type>(value * static_cast<mul_type>(__x.value) % mod); return *this; } template <class _Tp> constexpr modint_if<_Tp> &operator*=(_Tp __x) noexcept { value = static_cast<value_type>( value * ((__x %= mod) < 0 ? mul_type(__x + mod) : mul_type(__x)) % mod); return *this; } // }} operator*= // operator* {{ constexpr modint operator*(const modint &__x) const noexcept { return {static_cast<mul_type>(value) * __x.value % mod, direct_ctor_tag}; } template <class _Tp> constexpr modint_if<_Tp> operator*(_Tp __x) const noexcept { __x %= mod; if (__x < 0) __x += mod; return {static_cast<mul_type>(value) * __x % mod, direct_ctor_tag}; } template <class _Tp> constexpr friend modint_if<_Tp> operator*(_Tp __x, const modint &__y) noexcept { __x %= mod; if (__x < 0) __x += mod; return {static_cast<mul_type>(__x) * __y.value % mod, direct_ctor_tag}; } // }} operator* protected: static value_type _mem(value_type __x) { static std::vector<value_type> __m{0, 1}; static value_type __i = (__m.reserve(storage), 1); while (__i < __x) { ++__i; __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod); } return __m[__x]; } static value_type _div(mul_type __r, value_type __x) noexcept { assert(__x != value_type(0)); if (!__r) return 0; std::make_signed_t<value_type> __v{}; bool __neg = __x < 0 ? __x = -__x, true : false; if (static_cast<decltype(storage)>(__x) < storage) __v = _mem(__x); else { value_type __y{mod}, __u{1}, __t; while (__x) __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x, __v ^= __u ^= (__v -= __t * __u) ^= __u; if (__y < 0) __neg ^= 1; } if (__neg) __v = 0 < __v ? mod - __v : -__v; else if (__v < 0) __v += mod; return __r == mul_type(1) ? static_cast<value_type>(__v) : static_cast<value_type>(__r * __v % mod); } public: static void reserve(unsigned __n) noexcept { if (storage < __n) storage = __n; } // operator/= {{ constexpr modint &operator/=(const modint &__x) noexcept { if (value) value = _div(value, __x.value); return *this; } template <class _Tp> constexpr modint_if<_Tp> &operator/=(_Tp __x) noexcept { if (value) value = _div(value, __x %= mod); return *this; } // }} operator/= // operator/ {{ constexpr modint operator/(const modint &__x) const noexcept { if (!value) return {}; return {_div(value, __x.value), direct_ctor_tag}; } template <class _Tp> constexpr modint_if<_Tp> operator/(_Tp __x) const noexcept { if (!value) return {}; return {_div(value, __x %= mod), direct_ctor_tag}; } template <class _Tp> constexpr friend modint_if<_Tp> operator/(_Tp __x, const modint &__y) noexcept { if (!__x) return {}; if ((__x %= mod) < 0) __x += mod; return {_div(__x, __y.value), direct_ctor_tag}; } // }} operator/ constexpr modint inv() const noexcept { return _div(1, value); } template <class _Tp> constexpr modint pow(_Tp __e) const noexcept { static_assert(not std::is_floating_point<_Tp>::value); modint __r{mod != 1, direct_ctor_tag}; for (modint __b{__e < _Tp(0) ? __e = -__e, _div(1, value) : value, direct_ctor_tag}; __e; __e /= 2, __b *= __b) if (__e % 2) __r *= __b; return __r; } template <class _Tp> constexpr friend modint pow(modint __b, _Tp __e) noexcept { static_assert(not std::is_floating_point<_Tp>::value); if (__e < _Tp(0)) { __e = -__e; __b.value = _div(1, __b.value); } modint __r{mod != 1, direct_ctor_tag}; for (; __e; __e /= 2, __b *= __b) if (__e % 2) __r *= __b; return __r; } constexpr modint sqrt() const noexcept { return {sqrt_mod(value, mod), direct_ctor_tag}; } friend constexpr modint sqrt(const modint &__x) noexcept { return {sqrt_mod(__x.value, mod), direct_ctor_tag}; } friend std::istream &operator>>(std::istream &__is, modint &__x) noexcept { std::string __s; __is >> __s; bool __neg = false; if (__s.front() == '-') { __neg = true; __s.erase(__s.begin()); } __x = 0; for (char __c : __s) __x = __x * 10 + (__c - '0'); if (__neg) __x = -__x; return __is; } }; template <auto _Mod, unsigned _Storage> typename modint<_Mod, _Storage>::mod_type modint<_Mod, _Storage>::mod = _Mod > 0 ? _Mod : 0; template <auto _Mod, unsigned _Storage> unsigned modint<_Mod, _Storage>::storage = _Storage; } // namespace _modint_impl constexpr unsigned _modint_default_storage = 1 << 24; template <auto _Mod, unsigned _Storage = _modint_default_storage, typename = std::enable_if_t<(_Mod > 0)>> using modint = _modint_impl::modint<_Mod, _Storage>; template <unsigned _Id = 0, unsigned _Storage = _modint_default_storage> using runtime_modint = _modint_impl::modint<-(signed)_Id, _Storage>; template <unsigned _Id = 0, unsigned _Storage = _modint_default_storage> using runtime_modint64 = _modint_impl::modint<-(int_least64_t)_Id, _Storage>; } // namespace workspace #line 2 "Library\\src\\algebra\\polynomial.hpp" /** * @file polynomial.hpp * @brief Polynomial */ #include <algorithm> #line 11 "Library\\src\\algebra\\polynomial.hpp" #line 2 "Library\\src\\algebra\\fft.hpp" /** * @file fft.hpp * @brief Fast Fourier Transform */ #line 9 "Library\\src\\algebra\\fft.hpp" #line 2 "Library\\src\\algebra\\complex.hpp" /** * @file complex.hpp * @brief Complex Number */ namespace workspace { // Complex number. template <class _Tp> class complex { _Tp re, im; friend constexpr complex conj(const complex &x) noexcept { return {x.re, -x.im}; } friend constexpr _Tp abs(const complex &x) noexcept { return hypot(x.re, x.im); } friend constexpr _Tp arg(const complex &x) noexcept { return atan2(x.re, x.im); } template <class _Is> friend constexpr _Is &operator>>(_Is &__is, complex &x) noexcept { return __is >> x.re >> x.im; } template <class _Os> friend constexpr _Os &operator<<(_Os &__os, const complex &x) noexcept { return __os << x.re << ' ' << x.im; } public: constexpr complex() noexcept : re{}, im{} {} constexpr complex(_Tp _re) noexcept : re{_re}, im{} {} constexpr complex(_Tp _re, _Tp _im) noexcept : re{_re}, im{_im} {} constexpr _Tp real() const noexcept { return re; } constexpr void real(_Tp _re) noexcept { re = _re; } constexpr _Tp imag() const noexcept { return im; } constexpr void imag(_Tp _im) noexcept { im = _im; } constexpr complex operator+() const noexcept { return *this; } constexpr complex operator-() const noexcept { return {-re, -im}; } constexpr complex &operator+=(const complex &x) noexcept { return re += x.re, im += x.im, *this; } constexpr complex &operator-=(const complex &x) noexcept { return re -= x.re, im -= x.im, *this; } constexpr complex &operator*=(const complex &x) noexcept { _Tp _re{re * x.re - im * x.im}; return im = im * x.re + x.im * re, re = _re, *this; } constexpr complex &operator*=(_Tp x) noexcept { return re *= x, im *= x, *this; } constexpr complex &operator/=(const complex &x) noexcept { return (*this *= conj(x)) /= re * re + im * im; } constexpr complex &operator/=(_Tp x) noexcept { return re /= x, im /= x, *this; } constexpr complex operator+(const complex &x) const noexcept { return {re + x.re, im + x.im}; } constexpr complex operator-(const complex &x) const noexcept { return {re - x.re, im - x.im}; } constexpr complex operator*(const complex &x) const noexcept { return complex(*this) *= x; } constexpr complex operator*(_Tp x) const noexcept { return {re * x, im * x}; } constexpr complex operator/(const complex &x) const noexcept { return complex(*this) /= x; } constexpr complex operator/(_Tp x) const noexcept { return {re / x, im / x}; } }; } // namespace workspace #line 2 "Library\\lib\\cxx17" #line 2 "Library\\lib\\cxx14" #ifndef _CXX14_CONSTEXPR #if __cplusplus >= 201402L #define _CXX14_CONSTEXPR constexpr #else #define _CXX14_CONSTEXPR #endif #endif #line 4 "Library\\lib\\cxx17" #ifndef _CXX17_CONSTEXPR #if __cplusplus >= 201703L #define _CXX17_CONSTEXPR constexpr #else #define _CXX17_CONSTEXPR #endif #endif #ifndef _CXX17_STATIC_ASSERT #if __cplusplus >= 201703L #define _CXX17_STATIC_ASSERT static_assert #else #define _CXX17_STATIC_ASSERT assert #endif #endif #line 22 "Library\\lib\\cxx17" #if __cplusplus < 201703L namespace std { /** * @brief Return the size of a container. * @param __cont Container. */ template <typename _Container> constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size())) -> decltype(__cont.size()) { return __cont.size(); } /** * @brief Return the size of an array. */ template <typename _Tp, size_t _Nm> constexpr size_t size(const _Tp (&)[_Nm]) noexcept { return _Nm; } /** * @brief Return whether a container is empty. * @param __cont Container. */ template <typename _Container> [[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept( noexcept(__cont.empty())) -> decltype(__cont.empty()) { return __cont.empty(); } /** * @brief Return whether an array is empty (always false). */ template <typename _Tp, size_t _Nm> [[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept { return false; } /** * @brief Return whether an initializer_list is empty. * @param __il Initializer list. */ template <typename _Tp> [[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept { return __il.size() == 0; } struct monostate {}; } // namespace std #else #include <variant> #endif #line 2 "Library\\src\\number_theory\\ext_gcd.hpp" /** * @file ext_gcd.hpp * @brief Extended Euclidean Algorithm */ #include <tuple> #line 11 "Library\\src\\number_theory\\ext_gcd.hpp" namespace workspace { /** * @param __a Integer * @param __b Integer * @return Pair of integers (x, y) s.t. ax + by = g = gcd(a, b) and (b = 0 or 0 * <= x < |b/g|) and (a = 0 or -|a/g| < y <= 0). Return (0, 0) if (a, b) = (0, * 0). */ template <typename _T1, typename _T2> constexpr auto ext_gcd(_T1 __a, _T2 __b) noexcept { static_assert(is_integral_ext<_T1>::value); static_assert(is_integral_ext<_T2>::value); using value_type = typename std::make_signed< typename std::common_type<_T1, _T2>::type>::type; using result_type = std::pair<value_type, value_type>; value_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1}; while (b != value_type(0)) { auto t = a / b; r ^= p ^= r ^= p -= t * r; s ^= q ^= s ^= q -= t * s; b ^= a ^= b ^= a -= t * b; } if (a < 0) p = -p, q = -q, a = -a; if (p < 0) { __a /= a, __b /= a; if (__b > 0) p += __b, q -= __a; else p -= __b, q += __a; } return result_type{p, q}; } /** * @param __a Integer * @param __b Integer * @param __c Integer * @return Pair of integers (x, y) s.t. ax + by = c and (b = 0 or 0 <= x < * |b/g|). Return (0, 0) if there is no solution. */ template <typename _T1, typename _T2, typename _T3> constexpr auto ext_gcd(_T1 __a, _T2 __b, _T3 __c) noexcept { static_assert(is_integral_ext<_T1>::value); static_assert(is_integral_ext<_T2>::value); static_assert(is_integral_ext<_T3>::value); using value_type = typename std::make_signed< typename std::common_type<_T1, _T2, _T3>::type>::type; using result_type = std::pair<value_type, value_type>; value_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1}; while (b != value_type(0)) { auto t = a / b; r ^= p ^= r ^= p -= t * r; s ^= q ^= s ^= q -= t * s; b ^= a ^= b ^= a -= t * b; } if (__c % a) return result_type{}; __a /= a, __b /= a, __c /= a; p *= __c, q *= __c; if (__b != value_type(0)) { auto t = p / __b; p -= __b * t; q += __a * t; if (p < 0) { if (__b > 0) p += __b, q -= __a; else p -= __b, q += __a; } } return result_type{p, q}; } } // namespace workspace #line 2 "Library\\src\\number_theory\\primitive_root.hpp" /** * @file primitive_root.hpp * @brief Primitive Root * @date 2020-12-28 */ #line 10 "Library\\src\\number_theory\\primitive_root.hpp" namespace workspace { /** * @brief Compile time primitive root. * * @tparam __mod Positive integer * @return Minimum positive one if it exists. Otherwise 0. */ template <class Tp> constexpr typename std::enable_if<(is_integral_ext<Tp>::value), Tp>::type primitive_root(const Tp __mod) noexcept { assert(__mod > 0); using int_type = typename multiplicable_uint<Tp>::type; int_type __r = __mod, __p[16] = {}, *__q = __p; for (int_type __i = 2; __i <= __r / __i; ++__i) { if (__r % __i) continue; *__q++ = __i; while (!(__r % __i)) __r /= __i; } if (__r != 1) *__q++ = __r; int_type __tot = __mod; for (__q = __p; *__q; *__q++ = 0) (__tot /= *__q) *= *__q - 1; __r = __tot, __q = __p + 1, __p[0] = 1; for (int_type __i = 2; __i <= __r / __i; ++__i) { if (__r % __i) continue; *__q++ = __i; while (!(__r % __i)) __r /= __i; } if (__r != 1) *__q++ = __r; for (Tp __r = 1; __r != __mod; ++__r) { auto __cnt = 0; for (__q = __p; *__q; ++__q) { int_type __w = 1; for (int_type __e = __tot / *__q, __x = __r; __e; __e >>= 1, (__x *= __x) %= __mod) if (__e & 1) (__w *= __x) %= __mod; if (__w == 1 && ++__cnt > 1) break; } if (__cnt == 1) return __r; } return 0; }; } // namespace workspace #line 15 "Library\\src\\algebra\\fft.hpp" namespace workspace { namespace _fft_impl { template <class _Tp, bool = std::is_floating_point<_Tp>::value, class = void> struct to_float { using type = double; }; template <class _Tp> struct to_float<_Tp, true> { using type = _Tp; }; // template <class _Tp> // struct to_float<_Tp, false, std::enable_if_t<sizeof(_Tp) <= sizeof(float)>> { // using type = float; // }; template <class _Tp> struct to_float<_Tp, false, std::enable_if_t<(sizeof(_Tp) > sizeof(double))>> { using type = long double; }; // Assume ntt-friendly mod. template <class _Tp> struct field { using type = std::conditional_t<has_mod<_Tp>::value, _Tp, complex<typename to_float<_Tp>::type>>; }; template <class _Tp> struct field<complex<_Tp>> : field<_Tp> {}; // Modular template <class _Tp, int _Nm = 29, bool = has_mod<_Tp>::value> struct coef { _Tp s[_Nm], is[_Nm], ip2[_Nm]; _CXX14_CONSTEXPR coef() : s{}, is{}, ip2{1, (1 + _Tp::mod) / 2} { if (_Tp::mod < 2) return; int cnt2 = std::min(__builtin_ctz(_Tp::mod - 1), _Nm + 1); _Tp e = 1; _Tp w = primitive_root(_Tp::mod); for (auto p = (_Tp::mod - 1) >> cnt2; p; p >>= 1, w *= w) if (p & 1) e *= w; _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first; _Tp es[_Nm]{}, ies[_Nm]{}; for (int i = cnt2; i >= 2; i--) { es[i - 2] = e, e *= e; ies[i - 2] = ie, ie *= ie; } e = ie = 1; for (int i = 0; i < cnt2 - 1; i++) { s[i] = es[i] * e, e *= ies[i]; is[i] = ies[i] * ie, ie *= es[i]; } for (int i = 1; i < _Nm - 1; ++i) ip2[i + 1] = ip2[i] * ip2[1]; } }; // Complex template <class _Tp, int _Nm> struct coef<_Tp, _Nm, false> { _Tp s[_Nm], is[_Nm], ip2[_Nm]; static_assert(_Nm < 30); _CXX14_CONSTEXPR static _Tp es[29] = { {0, 1}, {0.70710678118654752438189403651, 0.70710678118654752443610414514}, {0.92387953251128675610142140795, 0.38268343236508977172325753068}, {0.98078528040323044911909938781, 0.19509032201612826785692544201}, {0.99518472667219688623102546998, 0.09801714032956060199569840382}, {0.99879545620517239270077028412, 0.04906767432741801425693899119}, {0.99969881869620422009748220149, 0.02454122852291228803212346128}, {0.99992470183914454093764001552, 0.01227153828571992607945510345}, {0.99998117528260114264494415325, 0.00613588464915447535972750246}, {0.99999529380957617150137498041, 0.00306795676296597627029751672}, {0.99999882345170190993313003025, 0.00153398018628476561237225788}, {0.99999970586288221914474799723, 0.00076699031874270452695124765}, {0.99999992646571785113833452651, 0.00038349518757139558906815188}, {0.99999998161642929381167504976, 0.00019174759731070330743679009}, {0.99999999540410731290905263501, 0.00009587379909597734587360460}, {0.99999999885102682753608427379, 0.00004793689960306688454884772}, {0.99999999971275670682981095982, 0.00002396844980841821872882467}, {0.99999999992818917670745273995, 0.00001198422490506970642183282}, {0.99999999998204729416331065783, 0.00000599211245264242784278378}, {0.99999999999551182356793271877, 0.00000299605622633466075058210}, {0.99999999999887795586487812538, 0.00000149802811316901122883643}, {0.99999999999971948897977205850, 0.00000074901405658471572113723}, {0.99999999999992987223139048746, 0.00000037450702829238412391495}, {0.99999999999998246807140014902, 0.00000018725351414619534486931}, {0.99999999999999561700429751010, 0.00000009362675707309808280024}, {0.99999999999999890425107437752, 0.00000004681337853654909269501}, {0.99999999999999972607632112153, 0.00000002340668926827455275977}, {0.99999999999999993153263280754, 0.00000001170334463413727718121}, {0.99999999999999998286960567472, 0.00000000585167231706863869077}}; _CXX14_CONSTEXPR coef() : s{}, is{}, ip2{1, .5} { _Tp ies[_Nm]; for (int i = 0; i < _Nm; ++i) ies[i] = _Tp(1) / es[i]; _Tp e = 1, ie = 1; for (int i = 0; i < _Nm; i++) { s[i] = es[i] * e, e *= ies[i]; is[i] = ies[i] * ie, ie *= es[i]; } for (int i = 1; i < _Nm - 1; ++i) ip2[i + 1] = ip2[i] * ip2[1]; } }; } // namespace _fft_impl template <bool _Inverse = false, class _Iterator> void fft(_Iterator __first, _Iterator __last) noexcept { using value_type = typename std::iterator_traits<_Iterator>::value_type; using difference_type = typename std::iterator_traits<_Iterator>::difference_type; _CXX14_CONSTEXPR _fft_impl::coef<value_type> c; auto __h = __builtin_ctz(std::distance(__first, __last)); if _CXX17_CONSTEXPR (_Inverse) { for (difference_type __p = 1; __p >> __h ^ 1; __p <<= 1) { value_type __iw = 1; auto __l = __first; for (auto __i = 1 << __h; __l != __last; __iw *= c.is[__builtin_ctz(--__i)]) { auto __r = std::next(__l, __p); for (auto __mid = __r; __l != __mid; ++__l, ++__r) { auto __tmp = (*__l - *__r) * __iw; *__l += *__r; *__r = __tmp; } __l = __r; } } while (__first != __last) *--__last *= c.ip2[__h]; } else { for (difference_type __p = 1 << __h; __p >>= 1;) { value_type __w = -1; auto __l = __first; for (auto __i = 1 << __h; __l != __last; __w *= c.s[__builtin_ctz(--__i)]) { auto __r = std::next(__l, __p); for (auto __mid = __r; __l != __mid; ++__l, ++__r) { auto __tmp = *__l; *__l -= *__r *= __w; *__r += __tmp; } __l = __r; } } } } template <class _Iterator> void fft(_Iterator __first, std::size_t __n) noexcept { fft(__first, std::next(__first, __n)); } template <class _Iterator> void ifft(_Iterator __first, _Iterator __last) noexcept { fft<true>(__first, __last); } template <class _Iterator> void ifft(_Iterator __first, std::size_t __n) noexcept { ifft(__first, std::next(__first, __n)); } template <size_t _Nm, size_t _Dm, class _Container, class _Index> decltype(auto) access(_Container &__a, const _Index &__i) { if _CXX17_CONSTEXPR (_Nm != _Dm) return access<_Nm + 1, _Dm>(__a[__i[_Nm]], __i); else return __a; } template <bool _Inverse, size_t _Dm, class _Container, class _Tp, class _Index> void dive(_Container &__a, const _Tp &__t, _Index &__i) { if _CXX17_CONSTEXPR (has_size<_Tp>::value) { for (__i.emplace_back(0); __i.back() != std::size(__t); ++__i.back()) dive<_Inverse, _Dm + 1>(__a, __t[__i.back()], __i); __i.pop_back(); } else { static std::vector<_Tp> __work; // Resize to a power of 2. size_t __len = 1 << (31 - __builtin_clz(std::size(__a))); if (__work.size() < __len) __work.resize(__len); for (size_t __k = 0; __k != __len; ++__k) __work[__k] = std::move(access<0, _Dm>(__a[__k], __i)); fft<_Inverse>(__work.data(), __work.data() + __len); for (size_t __k = 0; __k != __len; ++__k) access<0, _Dm>(__a[__k], __i) = std::move(__work[__k]); } } template <bool _Inverse, class _Container> void fft(_Container &__a) { if _CXX17_CONSTEXPR (has_size<_Container>::value) { if _CXX17_CONSTEXPR (has_resize<_Container>::value) // Resize to a power of 2. __a.resize(1 << (32 - __builtin_clz(__a.size() - 1))); std::vector<size_t> __i; dive<_Inverse, 0>(__a, __a[0], __i); for (size_t __k = 0; __k != std::size(__a); ++__k) fft<_Inverse>(__a[__k]); } } template <class _Container> auto conv_resize(_Container &__a, _Container &__b) { std::array<size_t, get_dimension<_Container>::value> __s; rec(__a, __s); rec(__b, __s); return __s; } template <size_t _Nm, class _Container, class _Size> void rec(const _Container &__a, _Size &__s) { if _CXX17_CONSTEXPR (_Nm != __s.size()) { __s[_Nm] = std::max(__s[_Nm], std::size(__a)); for (auto &__x : __a) rec<_Nm + 1>(__x, __s); } } } // namespace workspace #line 15 "Library\\src\\algebra\\polynomial.hpp" namespace workspace { /** * @brief Polynomial. * * @tparam _Tp Ring structure * @tparam _Conv_threshold Threshold for convolution method */ template <class _Tp, std::size_t _Conv_threshold = 64> class polynomial : public std::vector<_Tp> { using vec = std::vector<_Tp>; using poly = polynomial; template <class _Os> friend _Os& operator<<(_Os& __os, const poly& __x) { bool __head = true; for (const auto& __a : __x) { if (!__head) __os << ' '; __head = false; __os << __a; } return __os; } public: using typename vec::size_type; using typename vec::value_type; using vec::size; using vec::vec; using field = typename _fft_impl::field<_Tp>::type; protected: constexpr static _fft_impl::coef<field> __coef{}; static std::vector<field> __work1, __work2; void _erase_leading_zeros() noexcept { auto __i = vec::_M_impl._M_finish; while (__i != vec::_M_impl._M_start && *(__i - 1) == _Tp(0)) --__i; vec::_M_erase_at_end(__i); } template <class _Iter> void _dft(_Iter __first, _Iter __last) const noexcept { fft<false>(__first, __last); } template <class _Iter> void _idft(_Iter __first, _Iter __last) const noexcept { fft<true>(__first, __last); } void _conv_naive(const poly& __x) noexcept { if (vec::_M_impl._M_start == vec::_M_impl._M_finish) return; if (__x._M_impl._M_start == __x._M_impl._M_finish) { vec::_M_erase_at_end(vec::_M_impl._M_start); return; } vec::_M_default_append(__x._M_impl._M_finish - __x._M_impl._M_start - 1); for (auto __i = vec::_M_impl._M_finish; __i-- != vec::_M_impl._M_start;) { auto __j = __i, __k = __x._M_impl._M_start; *__i *= *__k++; while (__j != vec::_M_impl._M_start && __k != __x._M_impl._M_finish) *__i += *--__j * *__k++; } } template <class _Poly> void _conv_dft(_Poly&& __x) noexcept { size_type __n = vec::_M_impl._M_finish - vec::_M_impl._M_start, __m = __x._M_impl._M_finish - __x._M_impl._M_start, __len = 1 << (32 - __builtin_clz(__n + __m - 1)); if (__work1.size() < __len) __work1.resize(__len); if (__work2.size() < __len) __work2.resize(__len); vec::_M_default_append(__m - 1); if _CXX17_CONSTEXPR (std::is_same<_Tp, field>::value) { std::fill(std::move(vec::_M_impl._M_start, vec::_M_impl._M_finish, __work1.data()), __work1.data() + __len, _Tp(0)); std::fill(std::move(__x._M_impl._M_start, __x._M_impl._M_finish, __work2.data()), __work2.data() + __len, _Tp(0)); fft(__work1.data(), __len); fft(__work2.data(), __len); for (size_type __i = 0; __i < __len; ++__i) __work1[__i] *= std::move(__work2[__i]); ifft(__work1.data(), __len); std::move(__work1.data(), __work1.data() + __n + __m - 1, vec::_M_impl._M_start); } else { std::fill_n(__work1.data(), __len, _Tp(0)); std::fill_n(__work2.data(), __len, _Tp(0)); for (size_type __i = 0; __i < __n; ++__i) __work1[__i].real(vec::_M_impl._M_start[__i]); for (size_type __i = 0; __i < __m; ++__i) __work1[__i].imag(__x._M_impl._M_start[__i]); fft(__work1.data(), __len); __work2[0].imag(__work1[0].real() * __work1[0].imag()); for (size_type __b = 1; __b != __len; __b <<= 1) for (size_type __i = __b, __j = __b << 1; __j-- != __b; ++__i) __work2[__i] = (__work1[__i] + conj(__work1[__j])) * (__work1[__i] - conj(__work1[__j])) / 4; ifft(__work2.data(), __len); for (size_type __i = 0; __i < __n + __m - 1; ++__i) if _CXX17_CONSTEXPR (std::is_floating_point<_Tp>::value) vec::_M_impl._M_start[__i] = __work2[__i].imag(); else vec::_M_impl._M_start[__i] = roundl(__work2[__i].imag()); } } size_type _divmod_naive(const poly& __x) { auto __xfin = __x._M_impl._M_finish; auto __xlen = __x.size(); while (__xfin != __x._M_impl._M_start && *(__xfin - 1) == _Tp(0)) --__xfin, --__xlen; assert(__xlen != 0); _erase_leading_zeros(); auto __p = vec::_M_impl._M_finish; while (size_type(__p - vec::_M_impl._M_start) >= __xlen) { --__p; auto __src = __xfin; auto __dst = __p; *__dst /= *--__src; while (__src != __x._M_impl._M_start) *--__dst -= *--__src * *__p; } return std::min<size_type>(__xlen - 1, __p - vec::_M_impl._M_start); } void _div_naive(const poly& __x) { operator>>=(_divmod_naive(__x)); } void _div_doubling(poly&& __x) noexcept { _erase_leading_zeros(); __x._erase_leading_zeros(); auto __n = vec::_M_impl._M_finish - vec::_M_impl._M_start; auto __m = __x._M_impl._M_finish - __x._M_impl._M_start; if (__n < __m) vec::clear(); else { assert(__m != 0); std::reverse(__x._M_impl._M_start, __x._M_impl._M_finish); __x = __x.inv(__n - __m + 1); std::reverse(vec::_M_impl._M_start, vec::_M_impl._M_finish); vec::_M_erase_at_end(vec::_M_impl._M_finish - (__m - 1)); operator*=(__x).resize(__n - __m + 1); std::reverse(vec::_M_impl._M_start, vec::_M_impl._M_finish); } } public: /** * @return Degree of %polynomial. Return -1 if it equals zero. */ size_type deg() const noexcept { return size() - 1; } /** * @param __i Not exceeding the degree. * @return Coefficient of x^i. */ typename vec::reference operator[](size_type __i) noexcept { assert(__i < size()); return *(vec::_M_impl._M_start + __i); } /** * @param __i Not exceeding the degree. * @return Coefficient of x^i. */ typename vec::const_reference operator[](size_type __i) const noexcept { assert(__i < size()); return *(vec::_M_impl._M_start + __i); } /** * @brief Evaluate at given point. */ _Tp eval(const _Tp& __a) const noexcept { _Tp __v(0), __p(1); for (auto __i = vec::_M_impl._M_start; __i != vec::_M_impl._M_finish; ++__i, __p *= __a) __v += *__i * __p; return __v; } /** * @brief In-place multipoint evaluation. */ template <class _Iter, typename = std::_RequireInputIter<_Iter>> _Iter eval(_Iter __first, _Iter __last) const noexcept { return eval(__first, __last, __first); } /** * @brief Multipoint evaluation. */ template <class _InputIter, class _OutputIter, typename = std::_RequireInputIter<_InputIter>> _OutputIter eval(_InputIter __first, _InputIter __last, _OutputIter __result) const noexcept { size_type __n = std::distance(__first, __last); if (!__n) return __result; auto __tree = new poly[__n << 1]; for (auto __p = __tree + __n; __first != __last; ++__p, ++__first) *__p = {-*__first, 1}; for (size_type __i = __n; --__i;) __tree[__i] = __tree[__i << 1] * __tree[__i << 1 | 1]; __tree[1] = operator%(std::move(__tree[1])); for (size_type __i = 2; __i != __n << 1; __i += 2) __tree[__i] = __tree[__i >> 1] % std::move(__tree[__i]), __tree[__i | 1] = std::move(__tree[__i >> 1] %= std::move(__tree[__i | 1])); for (size_type __i = 0; __i != __n; ++__i) *__result++ = std::move(*__tree[__n + __i]._M_impl._M_start); delete[] __tree; return __result; } /** * @brief Multiply by x^i. */ poly& operator<<=(size_type __i) noexcept { vec::insert(vec::begin(), __i, _Tp(0)); return *this; } /** * @brief Divide by x^i. */ poly& operator>>=(size_type __i) noexcept { vec::_M_erase_at_end( std::move(vec::_M_impl._M_start + std::min(__i, size()), vec::_M_impl._M_finish, vec::_M_impl._M_start)); return *this; } /** * @brief Multiply by x^i. */ poly operator<<(size_type __i) const noexcept { return poly(*this).operator<<=(__i); } /** * @brief Divide by x^i. */ poly operator>>(size_type __i) const noexcept { return poly(*this).operator>>=(__i); } poly operator+() const noexcept { return *this; } poly operator-() const noexcept { poly __x = *this; for (auto __i = __x._M_impl._M_start; __i != __x._M_impl._M_finish; ++__i) *__i = -*__i; return __x; } poly& operator+=(const poly& __x) noexcept { if (size() < __x.size()) vec::_M_default_append(__x.size() - size()); for (auto __i = vec::_M_impl._M_start, __j = __x._M_impl._M_start; __j != __x._M_impl._M_finish; ++__i, ++__j) *__i += *__j; _erase_leading_zeros(); return *this; } poly& operator+=(const _Tp& __c) noexcept { if (__c != static_cast<_Tp>(0)) { if (vec::_M_impl._M_start == vec::_M_impl._M_finish) vec::emplace_back(__c); else *vec::_M_impl._M_start += __c, _erase_leading_zeros(); } return *this; } poly& operator-=(const poly& __x) noexcept { if (size() < __x.size()) vec::_M_default_append(__x.size() - size()); for (auto __i = vec::_M_impl._M_start, __j = __x._M_impl._M_start; __j != __x._M_impl._M_finish; ++__i, ++__j) *__i -= *__j; _erase_leading_zeros(); return *this; } poly& operator-=(const _Tp& __c) noexcept { if (__c != static_cast<_Tp>(0)) { if (vec::_M_impl._M_start == vec::_M_impl._M_finish) vec::emplace_back(-__c); else *vec::_M_impl._M_start -= __c, _erase_leading_zeros(); } return *this; } poly& operator*=(const poly& __x) noexcept { if (this == std::addressof(__x)) // with itself return operator*=(poly(__x)); std::min(size(), __x.size()) > _Conv_threshold ? _conv_dft(__x) : _conv_naive(__x); return *this; } poly& operator*=(poly&& __x) noexcept { if (this == std::addressof(__x)) // with itself return operator*=(poly(__x)); std::min(size(), __x.size()) > _Conv_threshold ? _conv_dft(std::move(__x)) : _conv_naive(std::move(__x)); return *this; } poly& operator*=(const _Tp& __c) noexcept { if (__c == static_cast<_Tp>(0)) vec::_M_erase_at_end(vec::_M_impl._M_start); else for (auto __i = vec::_M_impl._M_start; __i != vec::_M_impl._M_finish; ++__i) *__i *= __c; return *this; } poly& operator/=(const _Tp& __c) noexcept { assert(__c != static_cast<_Tp>(0)); for (auto __i = vec::_M_impl._M_start; __i != vec::_M_impl._M_finish; ++__i) *__i /= __c; return *this; } poly pow(size_type __e) const noexcept { if (vec::empty()) return *this; if (!__e) return {1}; if (size() == 1) { _Tp __x = vec::front(), __y = 1; for (auto __i = __e; __i; __i >>= 1, __x *= __x) if (__i & 1) __y *= __x; return {__y}; } size_type __deg = (size() - 1) * __e; assert(__deg > 0); poly __p(1 << (32 - __builtin_clz(__deg))); std::copy(vec::_M_impl._M_start, vec::_M_impl._M_finish, __p._M_impl._M_start); fft(__p._M_impl._M_start, __p._M_impl._M_finish); for (auto&& __x : __p) { _Tp __y = 1; for (auto __i = __e; __i; __i >>= 1, __x *= __x) if (__i & 1) __y *= __x; __x = __y; } ifft(__p._M_impl._M_start, __p._M_impl._M_finish); __p.resize(__deg + 1); return __p; } poly rev() const noexcept { return rev(size()); } poly rev(size_type __n) const noexcept { poly __r(__n); auto __src = vec::_M_impl._M_start; auto __dst = __r._M_impl._M_finish; for (size_type __i = std::min(__n, size()); __i; --__i) *--__dst = *__src++; return __r; } poly inv() const noexcept { return inv(size()); } /** * @brief Multiplicative inverse modulo x^n. * * @param __n Degree of modulus * @return */ poly inv(size_type __n) const noexcept { if (!__n) return {}; assert(*vec::_M_impl._M_start != _Tp(0)); size_type __len = 1; while (__len < __n) __len <<= 1; poly __y(__len); auto __xp = new _Tp[__len], __yp = __y._M_impl._M_start, __zp = new _Tp[__len]; *__yp = _Tp(1) / *vec::_M_impl._M_start; for (size_type __i = 1; __i != __len; __i <<= 1) { std::fill(std::copy_n(__yp, __i, __zp), __zp + (__i << 1), _Tp(0)); _dft(__zp, __zp + (__i << 1)); std::fill( std::copy_n(vec::_M_impl._M_start, std::min(__i << 1, size()), __xp), __xp + (__i << 1), _Tp(0)); _dft(__xp, __xp + (__i << 1)); for (size_type __j = 0; __j != (__i << 1); ++__j) __xp[__j] *= -__zp[__j]; _idft(__xp, __xp + (__i << 1)); std::fill(std::move(__xp + __i, __xp + (__i << 1), __xp), __xp + (__i << 1), _Tp(0)); _dft(__xp, __xp + (__i << 1)); for (size_type __j = 0; __j != (__i << 1); ++__j) __xp[__j] *= static_cast<_Tp&&>(__zp[__j]); _idft(__xp, __xp + (__i << 1)); std::move(__xp, __xp + __i, __yp + __i); } delete[] __xp; delete[] __zp; __y._M_erase_at_end(__yp + __n); return __y; } poly& operator/=(const poly& __x) noexcept { if (__x.size() > _Conv_threshold) _div_doubling(poly(__x)); else _div_naive(__x); return *this; } poly& operator/=(poly&& __x) noexcept { if (__x.size() > _Conv_threshold) _div_doubling(std::move(__x)); else _div_naive(__x); return *this; } poly& operator%=(const poly& __x) noexcept { if (__x.size() > _Conv_threshold) return operator-=(__x.operator*(operator/(__x))); vec::_M_erase_at_end(vec::_M_impl._M_start + _divmod_naive(__x)); return *this; } template <class _T> poly operator+(_T&& __x) const noexcept { return poly(*this).operator+=(std::forward<_T>(__x)); } template <class _T> poly operator-(_T&& __x) const noexcept { return poly(*this).operator-=(std::forward<_T>(__x)); } template <class _T> poly operator*(_T&& __x) const noexcept { return poly(*this).operator*=(std::forward<_T>(__x)); } template <class _T> poly operator/(_T&& __x) const noexcept { return poly(*this).operator/=(std::forward<_T>(__x)); } template <class _T> poly operator%(_T&& __x) const noexcept { return poly(*this).operator%=(std::forward<_T>(__x)); } std::pair<poly, poly> divmod(const poly& __x) const { if (__x.size() > _Conv_threshold) return {operator/(__x), operator%(__x)}; poly __rem(*this); auto __p = __rem._M_impl._M_start + __rem._divmod_naive(__x); poly __quot(__p, __rem._M_impl._M_finish); __rem._M_erase_at_end(__p); return {__quot, __rem}; } /** * @brief Differentiate. * * @return Derivative. */ poly deriv() const noexcept { if (auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish; __s != __f) { poly __der(++__s, __f); __s = __der._M_impl._M_start, __f = __der._M_impl._M_finish; for (_Tp __i(1); __s != __f; ++__s, __i += 1) *__s *= __i; __der._erase_leading_zeros(); return __der; } return {}; } /** * @brief Differentiate at given point. * * @return Derivative coefficient. */ _Tp deriv(const _Tp& __a) const noexcept { _Tp __der(0); if (auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish; __s != __f) for (_Tp __i(1), __p(1); ++__s != __f; __i += 1, __p *= __a) __der += *__s * __i * __p; return __der; } /** * @brief Integrate. * * @return Integral indefinite at the degrees divisible by the characteristic * of `_Tp`. Coefficients are set as 0 there. */ poly integ() const noexcept { if (auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish; __s != __f) { poly __int(__f - __s + 1); __f = std::copy(__s, __f, __int._M_impl._M_start + 1); __s = __int._M_impl._M_start + 1; for (_Tp __i(1); __s != __f; ++__s, __i += 1) __i == _Tp(0) ? assert(*__s == _Tp(0)) : void(*__s /= __i); return __int; } return {}; } /** * @brief Integrate in given range. * * @return Definite integral over [0, __a]. */ _Tp integ(const _Tp& __a) const noexcept { _Tp __int(0); auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish; for (_Tp __p(__a), __i(1); __s != __f; ++__s, __p *= __a, __i += 1) __int += *__s / __i * __p; return __int; } /** * @brief Integrate in given range. * * @return Definite integral over [__a, __b]. */ _Tp integ(const _Tp& __a, const _Tp& __b) const noexcept { _Tp __int(0); auto __s = vec::_M_impl._M_start, __f = vec::_M_impl._M_finish; for (_Tp __pa(__a), __pb(__b), __i(1); __s != __f; ++__s, __pa *= __a, __pb *= __b, __i += 1) __int += *__s / __i * (__pb - __pa); return __int; } /** * @brief * * @param __a * @return f(x + a) */ poly shift(const _Tp& __a) const noexcept { size_type __n = size(); poly __s(*this), __e(__n); _Tp __cs(1), __ce(1); for (size_type __i{0}; __i != __n; __cs *= _Tp(++__i), __ce *= __a / _Tp(__i)) __s[__i] *= __cs, __e[__n - 1 - __i] = __ce; __s *= std::move(__e); __ce = 1; for (size_type __i{0}; __i != __n; __ce /= _Tp(++__i)) __e[__i] = __s[__n - 1 + __i] * __ce; return __e; } }; template <class _Tp, size_t _C> std::vector<typename polynomial<_Tp, _C>::field> polynomial<_Tp, _C>::__work1; template <class _Tp, size_t _C> std::vector<typename polynomial<_Tp, _C>::field> polynomial<_Tp, _C>::__work2; /** * @brief Generating function of the sum of k-th powers of the first n * non-negative integers. O(d \\log d) time in modulo x^d. * * @return \\sum_{k=0}^{d-1} x^k \\sum_{i=0}^{n-1} i^k. */ template <class _Tp> polynomial<_Tp> power_sum(_Tp __n, std::size_t __d) { if (!__d) return {}; polynomial<_Tp> __f(__d), __e(__d); __f[0] = __n; for (std::size_t __i = 1; __i != __d; ++__i) __f[__i] = __f[__i - 1] * __n; _Tp __c{1}; for (std::size_t __i = 0; __i != __d; ++__i) __c /= __i + 1, __f[__i] *= __c, __e[__i] = __c; (__f *= __e.inv(__d)).resize(__d); __c = 1; for (std::size_t __i = 0; __i != __d; __c *= ++__i) __f[__i] *= __c; return __f; } } // namespace workspace #line 3 "other-workspace\\tmp2.cc" namespace workspace { using mint = modint<998244353, 1 << 20>; using poly = polynomial<mint>; } // namespace workspace #line 2 "Library\\src\\combinatorics\\binomial.hpp" /** * @file binomial.hpp * @brief Binomial Coefficient */ #line 9 "Library\\src\\combinatorics\\binomial.hpp" #line 2 "Library\\src\\combinatorics\\factorial.hpp" /** * @file factorial.hpp * @brief Factorial */ #line 9 "Library\\src\\combinatorics\\factorial.hpp" namespace workspace { // Factorial. template <class _Tp, class _X = int_least64_t> _Tp factorial(_X __x) noexcept { if (__x < 0) return 0; static std::vector<_Tp> __t{1}; static size_t __i = (__t.reserve(0x1000000), 0); while (__i < size_t(__x)) __t.emplace_back(__t.back() * _Tp(++__i)); return __t[__x]; } // Inverse of factorial. template <class _Tp, class _X = int_least64_t> _Tp inverse_factorial(_X __x) noexcept { if (__x < 0) return 0; static std::vector<_Tp> __t{1}; static size_t __i = (__t.reserve(0x1000000), 0); while (__i < size_t(__x)) __t.emplace_back(__t.back() / _Tp(++__i)); return __t[__x]; } } // namespace workspace #line 11 "Library\\src\\combinatorics\\binomial.hpp" namespace workspace { namespace _binom_impl { struct _binom_table { constexpr static int size = 132; __uint128_t __b[size][size]{1}; constexpr _binom_table() noexcept { for (int __i = 1; __i != size; ++__i) for (int __j = 0; __j != __i; ++__j) __b[__i][__j] += __b[__i - 1][__j], __b[__i][__j + 1] += __b[__i - 1][__j]; } constexpr auto operator()(int __x, int __y) const noexcept { return __x < 0 || __x < __y ? 0 : (assert(__x < size), __b[__x][__y]); } }; constexpr _binom_table table; } // namespace _binom_impl /** * @brief Binomial coefficient for integer args. Be careful with overflow. */ template <class _Tp, class _X = int_fast64_t, class _Y = int_fast64_t> constexpr _Tp binomial(_X __x, _Y __y) { if constexpr (is_integral_ext<_Tp>::value) return _binom_impl::table(__x, __y); if (__y < 0 || __x < __y) return 0; return factorial<_Tp>(__x) * inverse_factorial<_Tp>(__y) * inverse_factorial<_Tp>(__x - __y); } /** * @brief Catalan number. */ template <class _Tp, class _X = int_fast64_t> constexpr _Tp catalan(_X __x) { return __x < 0 ? _Tp(0) : binomial<_Tp>(__x << 1, __x) - binomial<_Tp>(__x << 1, __x + 1); } } // namespace workspace #line 9 "other-workspace\\tmp2.cc" namespace workspace { auto fact = factorial<mint>; auto ifact = inverse_factorial<mint>; auto binom = binomial<mint>; } // namespace workspace #include <bits/stdc++.h> int main() { using namespace workspace; using namespace std; ios::sync_with_stdio(0); cin.tie(0); string S; int A, B, C, D, E, F; cin >> S >> A >> B >> C; D = E = F = 0; for (auto e : S) { switch (e) { case 'a': { // A--; D++; } break; case 'b': { // B--; E++; } break; case 'c': { // C--; F++; } break; } } poly e(C - F + 1), f(A + B + C); for (auto l = 0; l <= C - F; ++l) { e[l] = ifact(l) * ifact(C - l); } for (auto l = 0; l < f.size(); ++l) { f[l] = fact(l) * fact(A + B + C - l - 1); } auto ef = e * f; poly a(A - D + 1), b(B - E + 1); for (auto i = 0; i <= A - D; ++i) { if (E) a[i] = binom(i + E - 1, i); else a[i] = i == 0; a[i] *= ifact(A - D - i); } for (auto i = 0; i <= B - E; ++i) { if (D) b[i] = binom(i + D - 1, i); else b[i] = i == 0; b[i] *= ifact(B - E - i); } auto ab = a * b; for (auto i = 0; i < ab.size(); ++i) { ab[i] *= fact(A - D + B - E - i); } mint ans; for (auto i = 0; i < ab.size(); ++i) { auto k = i + D + E; if (k) { ans += ef[A + B + C - k] * ifact(k - 1) * ifact(A + B - k) * ab[i]; } else { ans += binom(C + A + B - k, C) * ab[i]; } } cout << ans << "\n"; }