結果
問題 |
No.890 移調の限られた旋法
|
ユーザー |
|
提出日時 | 2022-05-10 22:09:47 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 248 ms / 2,000 ms |
コード長 | 1,904 bytes |
コンパイル時間 | 141 ms |
コンパイル使用メモリ | 82,376 KB |
実行使用メモリ | 246,784 KB |
最終ジャッジ日時 | 2024-07-18 05:03:17 |
合計ジャッジ時間 | 5,851 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 |
ソースコード
import math class NCK: ''' 最大値 :N mod ''' def __init__(self,N,mod): self.mod = mod self.N = N self.factmod = [1,1] for i in range(2,self.N+1): self.factmod.append((self.factmod[-1]*i)%self.mod) self.inv = [0,1] for i in range(2, N + 1): self.inv.append((-self.inv[self.mod % i] * (self.mod // i)) % self.mod) self.invfact = [1,1] for i in range(2, N + 1): self.invfact.append((self.invfact[-1]*self.inv[i])%self.mod) def nCk(self,a,b): if a < b: return 0 return ((self.factmod[a]*self.invfact[b]%self.mod)*self.invfact[a-b])%self.mod def invnCk(self,a,b): return ((self.factmod[a-b]*self.invfact[a]%self.mod)*self.factmod[b])%self.mod def modPow(a,n,mod):#繰り返し二乗法 a**n % mod if n==0: return 1 if n==1: return a%mod if n & 1: return (a*modPow(a,n-1,mod)) % mod t = modPow(a,n>>1,mod) return (t*t)%mod def factorization(N):#素因数分解√N arr = [] temp = N for i in range(2, int(-(-N**0.5//1))+1): if temp%i==0: cnt=0 while temp%i==0: cnt+=1 temp //= i arr.append([i, cnt]) if temp!=1: arr.append([temp, 1]) if arr==[]: arr.append([N, 1]) return arr #[素因数、個数] N,K = map(int,input().split()) mod =10**9+7 nck = NCK(N,mod) ans = 0 lsp = factorization(math.gcd(K,N)) lsp2 = [i for i,j in lsp] if lsp2==[1]: print(0) exit() NN = len(lsp2) for i in range(1,2**NN): ll = [] for j in range(NN): if (i >> j) & 1: ll.append(lsp2[j]) v = 1 for l in ll: v *= l if len(ll)%2==1: ans += nck.nCk(N//v, K//v) else: ans -= nck.nCk(N//v, K//v) ans %= mod print(ans)