結果
| 問題 |
No.1950 片道きゃっちぼーる
|
| コンテスト | |
| ユーザー |
auaua
|
| 提出日時 | 2022-05-20 22:50:10 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,534 ms / 3,000 ms |
| コード長 | 4,969 bytes |
| コンパイル時間 | 2,342 ms |
| コンパイル使用メモリ | 200,920 KB |
| 実行使用メモリ | 148,876 KB |
| 最終ジャッジ日時 | 2024-09-20 09:12:29 |
| 合計ジャッジ時間 | 19,248 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 23 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
#include <unordered_set>
#include <random>
//#define int long long
#define REP(i,m,n) for(int i=(m);i<(n);i++)
#define rep(i,n) REP(i,0,n)
#define pb push_back
#define all(a) a.begin(),a.end()
#define rall(c) (c).rbegin(),(c).rend()
#define mp make_pair
#define endl '\n'
//#define vec vector<ll>
//#define mat vector<vector<ll> >
#define fi first
#define se second
#define double long double
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> pll;
//typedef long double ld;
typedef complex<double> Complex;
const ll INF=1e9+7;
const ll MOD=998244353;
const ll inf=INF*INF;
const ll mod=INF;
const ll MAX=200010;
const double PI=acos(-1.0);
typedef vector<vector<ll> > mat;
typedef vector<ll> vec;
ll dx[]={0,1,0,-1};
ll dy[]={1,0,-1,0};
namespace internal {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
public:
scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto& x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
}
struct scc_graph {
public:
scc_graph() : internal(0) {}
scc_graph(int n) : internal(n) {}
void add_edge(int from, int to) {
int n = internal.num_vertices();
assert(0 <= from && from < n);
assert(0 <= to && to < n);
internal.add_edge(from, to);
}
std::vector<std::vector<int>> scc() { return internal.scc(); }
private:
internal::scc_graph internal;
};
void solve(){
ll N;cin>>N;
vector<ll>X(N),A(N);
rep(i,N)cin>>X[i];
rep(i,N)cin>>A[i];
set<ll>st;
rep(i,N){
st.insert(X[i]);
st.insert(X[i]-A[i]);
st.insert(X[i]+A[i]);
}
map<ll,ll>idx;
ll m=0;
for(auto e:st){
idx[e]=m;
m++;
}
scc_graph G(m);
vector<vector<ll> >G2(m);
rep(i,N){
G.add_edge(idx[X[i]+A[i]],idx[X[i]]);
G.add_edge(idx[X[i]-A[i]],idx[X[i]]);
G2[idx[X[i]+A[i]]].pb(idx[X[i]]);
G2[idx[X[i]-A[i]]].pb(idx[X[i]]);
}
auto f=G.scc();
vector<ll>ma(m);
for(auto e:st){
ma[idx[e]]=e;
}
vector<ll>used(m);
rep(i,f.size()){
ll maa=0;
rep(j,f[i].size()){
maa=max(maa,ma[f[i][j]]);
used[f[i][j]]=1;
}
rep(j,f[i].size()){
ma[f[i][j]]=maa;
for(auto e:G2[f[i][j]]){
ma[e]=max(ma[e],maa);
}
}
}
rep(i,N){
cout<<ma[idx[X[i]]]-X[i]<<endl;
}
}
signed main(){
cin.tie(0);
ios::sync_with_stdio(false);
solve();
}
auaua