結果

問題 No.1957 Xor Min
ユーザー chineristACchineristAC
提出日時 2022-05-27 21:28:00
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 212 ms / 2,000 ms
コード長 8,829 bytes
コンパイル時間 180 ms
コンパイル使用メモリ 82,468 KB
実行使用メモリ 87,340 KB
最終ジャッジ日時 2024-09-20 15:28:01
合計ジャッジ時間 4,453 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 92 ms
71,656 KB
testcase_01 AC 81 ms
71,724 KB
testcase_02 AC 206 ms
86,640 KB
testcase_03 AC 75 ms
72,544 KB
testcase_04 AC 73 ms
72,164 KB
testcase_05 AC 72 ms
71,220 KB
testcase_06 AC 75 ms
73,564 KB
testcase_07 AC 72 ms
72,056 KB
testcase_08 AC 73 ms
71,952 KB
testcase_09 AC 72 ms
71,420 KB
testcase_10 AC 74 ms
71,404 KB
testcase_11 AC 72 ms
71,792 KB
testcase_12 AC 71 ms
71,896 KB
testcase_13 AC 148 ms
86,288 KB
testcase_14 AC 169 ms
86,192 KB
testcase_15 AC 212 ms
87,340 KB
testcase_16 AC 145 ms
85,912 KB
testcase_17 AC 131 ms
85,472 KB
testcase_18 AC 131 ms
85,436 KB
testcase_19 AC 151 ms
85,604 KB
testcase_20 AC 159 ms
85,908 KB
testcase_21 AC 176 ms
85,956 KB
testcase_22 AC 147 ms
86,048 KB
testcase_23 AC 127 ms
84,564 KB
testcase_24 AC 113 ms
85,064 KB
testcase_25 AC 84 ms
79,056 KB
testcase_26 AC 147 ms
86,004 KB
testcase_27 AC 118 ms
84,708 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class SegmentTree:
    def __init__(self, init_val, segfunc, ide_ele):
        n = len(init_val)
        self.segfunc = segfunc
        self.ide_ele = ide_ele
        self.num = 1 << (n - 1).bit_length()
        self.tree = [ide_ele] * 2 * self.num
        self.size = n
        for i in range(n):
            self.tree[self.num + i] = init_val[i]
        for i in range(self.num - 1, 0, -1):
            self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1])

import sys,random,bisect
from collections import deque,defaultdict
import heapq
from itertools import permutations
from math import gcd

input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

def cmb(n, r, mod):
    if ( r<0 or r>n ):
        return 0
    return (g1[n] * g2[r] % mod) * g2[n-r] % mod

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

N = 3*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0

"""
zkouさん https://atcoder.jp/contests/practice2/submissions/24974537
"""
_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
 
 
def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2
 
 
def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2
 
 
def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans
 
 
def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by
 
    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
 
    It returns an empty list if at least one of a and b are empty.
 
    Constraints
    -----------
 
    >   len(a) + len(b) <= 8388609
 
    Complexity
    ----------
 
    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

memo = {}
def calc(L0,R0,L1,R1):
    assert L0 <= R0 and L1 <= R1

    if (L0,R0,L1,R1) in memo:
        return memo[L0,R0,L1,R1]
    
    if L0==R0 and L1==R1:
        return L0^L1
    
    res = 0
    for p in (0,1):
        for q in (0,1):
            if p >= L0&1:
                l0 = L0//2
            else:
                l0 = L0//2+1
            
            if p <= R0&1:
                r0 = R0//2
            else:
                r0 = R0//2-1

            if q >= L1&1:
                l1 = L1//2
            else:
                l1 = L1//2+1
            
            if q <= R1&1:
                r1 = R1//2
            else:
                r1 = R1//2-1
            
            if l0 <= r0 and l1 <= r1:
                res = max(res,2*calc(l0,r0,l1,r1)+p^q)
    
    memo[L0,R0,L1,R1] = res
    return res
    


A,B = mi()

ok = 0
ng = min(A,B)+1
while ng-ok>1:
    mid = (ok+ng)//2
    if calc(mid,A,mid,B) >= mid:
        ok = mid
    else:
        ng = mid

print(ok)
0