結果
問題 | No.1962 Not Divide |
ユーザー |
|
提出日時 | 2022-05-27 21:34:36 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 22 ms / 2,000 ms |
コード長 | 37,467 bytes |
コンパイル時間 | 3,866 ms |
コンパイル使用メモリ | 295,736 KB |
最終ジャッジ日時 | 2025-01-29 15:50:52 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 21 |
ソースコード
/*** date : 2022-05-27 21:34:31*/#define NDEBUGusing namespace std;// intrinstic#include <immintrin.h>#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cctype>#include <cfenv>#include <cfloat>#include <chrono>#include <cinttypes>#include <climits>#include <cmath>#include <complex>#include <cstdarg>#include <cstddef>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <deque>#include <fstream>#include <functional>#include <initializer_list>#include <iomanip>#include <ios>#include <iostream>#include <istream>#include <iterator>#include <limits>#include <list>#include <map>#include <memory>#include <new>#include <numeric>#include <ostream>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <streambuf>#include <string>#include <tuple>#include <type_traits>#include <typeinfo>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>// utilitynamespace Nyaan {using ll = long long;using i64 = long long;using u64 = unsigned long long;using i128 = __int128_t;using u128 = __uint128_t;template <typename T>using V = vector<T>;template <typename T>using VV = vector<vector<T>>;using vi = vector<int>;using vl = vector<long long>;using vd = V<double>;using vs = V<string>;using vvi = vector<vector<int>>;using vvl = vector<vector<long long>>;template <typename T, typename U>struct P : pair<T, U> {template <typename... Args>P(Args... args) : pair<T, U>(args...) {}using pair<T, U>::first;using pair<T, U>::second;P &operator+=(const P &r) {first += r.first;second += r.second;return *this;}P &operator-=(const P &r) {first -= r.first;second -= r.second;return *this;}P &operator*=(const P &r) {first *= r.first;second *= r.second;return *this;}template <typename S>P &operator*=(const S &r) {first *= r, second *= r;return *this;}P operator+(const P &r) const { return P(*this) += r; }P operator-(const P &r) const { return P(*this) -= r; }P operator*(const P &r) const { return P(*this) *= r; }template <typename S>P operator*(const S &r) const {return P(*this) *= r;}P operator-() const { return P{-first, -second}; }};using pl = P<ll, ll>;using pi = P<int, int>;using vp = V<pl>;constexpr int inf = 1001001001;constexpr long long infLL = 4004004004004004004LL;template <typename T>int sz(const T &t) {return t.size();}template <typename T, typename U>inline bool amin(T &x, U y) {return (y < x) ? (x = y, true) : false;}template <typename T, typename U>inline bool amax(T &x, U y) {return (x < y) ? (x = y, true) : false;}template <typename T>inline T Max(const vector<T> &v) {return *max_element(begin(v), end(v));}template <typename T>inline T Min(const vector<T> &v) {return *min_element(begin(v), end(v));}template <typename T>inline long long Sum(const vector<T> &v) {return accumulate(begin(v), end(v), 0LL);}template <typename T>int lb(const vector<T> &v, const T &a) {return lower_bound(begin(v), end(v), a) - begin(v);}template <typename T>int ub(const vector<T> &v, const T &a) {return upper_bound(begin(v), end(v), a) - begin(v);}constexpr long long TEN(int n) {long long ret = 1, x = 10;for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);return ret;}template <typename T, typename U>pair<T, U> mkp(const T &t, const U &u) {return make_pair(t, u);}template <typename T>vector<T> mkrui(const vector<T> &v, bool rev = false) {vector<T> ret(v.size() + 1);if (rev) {for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];} else {for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];}return ret;};template <typename T>vector<T> mkuni(const vector<T> &v) {vector<T> ret(v);sort(ret.begin(), ret.end());ret.erase(unique(ret.begin(), ret.end()), ret.end());return ret;}template <typename F>vector<int> mkord(int N,F f) {vector<int> ord(N);iota(begin(ord), end(ord), 0);sort(begin(ord), end(ord), f);return ord;}template <typename T>vector<int> mkinv(vector<T> &v) {int max_val = *max_element(begin(v), end(v));vector<int> inv(max_val + 1, -1);for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;return inv;}vector<int> mkiota(int n) {vector<int> ret(n);iota(begin(ret), end(ret), 0);return ret;}template <typename T>T mkrev(const T &v) {T w{v};reverse(begin(w), end(w));return w;}template <typename T>bool nxp(vector<T> &v) {return next_permutation(begin(v), end(v));}#define inV(T, v, n) \vector<T> v(n); \in(v)#define inVV(T, v, h, w) \vector<vector<T>> v(h, vector<T>(w)); \in(v);template <typename T>using minpq = priority_queue<T, vector<T>, greater<T>>;// 区間:半開区間 (ng, ok] または [ok, ng)template <typename T, typename F>T binary_search(T ng, T ok, const F& f) {if constexpr (is_integral<T>::value == true) {while (abs(ok - ng) > 1) {T x = (ok + ng) / 2;(f(x) ? ok : ng) = x;}return ok;} else {for (int iter = 0; iter < 60; iter++) {T x = (ok + ng) / 2;(f(x) ? ok : ng) = x;}return ok;}}// 解区間 (l, r)template <typename T, typename F>void ternary_search(T l, T r, const F& f, bool greater = false) {if constexpr (is_integral<T>::value == true) {while (abs(l - r) > 2) {T llr = (l * 2 + r * 1) / 3;T lrr = (l * 1 + r * 2) / 3;bool flag = f(llr) < f(lrr);if (flag != greater) {r = lrr;} else {l = llr;}}return (l + r) / 2;} else {for (int iter = 0; iter < 80; iter++) {T llr = (l * 2 + r * 1) / 3;T lrr = (l * 1 + r * 2) / 3;bool flag = f(llr) < f(lrr);if (flag != greater) {r = lrr;} else {l = llr;}}return (l + r) / 2;}}} // namespace Nyaan// bit operationnamespace Nyaan {__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {return _mm_popcnt_u64(a);}inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }template <typename T>inline int gbit(const T &a, int i) {return (a >> i) & 1;}template <typename T>inline void sbit(T &a, int i, bool b) {if (gbit(a, i) != b) a ^= T(1) << i;}constexpr long long PW(int n) { return 1LL << n; }constexpr long long MSK(int n) { return (1LL << n) - 1; }} // namespace Nyaan// inoutnamespace Nyaan {template <typename T, typename U>ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;}template <typename T, typename U>istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;}template <typename T>ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int)v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;}template <typename T>istream &operator>>(istream &is, vector<T> &v) {for (auto &x : v) is >> x;return is;}istream &operator>>(istream &is, __int128_t &x) {string S;is >> S;x = 0;int flag = 0;for (auto &c : S) {if (c == '-') {flag = true;continue;}x *= 10;x += c - '0';}if (flag) x = -x;return is;}istream &operator>>(istream &is, __uint128_t &x) {string S;is >> S;x = 0;for (auto &c : S) {x *= 10;x += c - '0';}return is;}ostream &operator<<(ostream &os, __int128_t x) {if (x == 0) return os << 0;if (x < 0) os << '-', x = -x;string S;while (x) S.push_back('0' + x % 10), x /= 10;reverse(begin(S), end(S));return os << S;}ostream &operator<<(ostream &os, __uint128_t x) {if (x == 0) return os << 0;string S;while (x) S.push_back('0' + x % 10), x /= 10;reverse(begin(S), end(S));return os << S;}void in() {}template <typename T, class... U>void in(T &t, U &...u) {cin >> t;in(u...);}void out() { cout << "\n"; }template <typename T, class... U, char sep = ' '>void out(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;out(u...);}void outr() {}template <typename T, class... U, char sep = ' '>void outr(const T &t, const U &...u) {cout << t;outr(u...);}struct IoSetupNya {IoSetupNya() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(15);cerr << fixed << setprecision(7);}} iosetupnya;} // namespace Nyaan// debugnamespace DebugImpl {template <typename U, typename = void>struct is_specialize : false_type {};template <typename U>struct is_specialize<U, typename conditional<false, typename U::iterator, void>::type>: true_type {};template <typename U>struct is_specialize<U, typename conditional<false, decltype(U::first), void>::type>: true_type {};template <typename U>struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {};void dump(const char& t) { cerr << t; }void dump(const string& t) { cerr << t; }void dump(const bool& t) { cerr << (t ? "true" : "false"); }void dump(__int128_t t) {if (t == 0) cerr << 0;if (t < 0) cerr << '-', t = -t;string S;while (t) S.push_back('0' + t % 10), t /= 10;reverse(begin(S), end(S));cerr << S;}void dump(__uint128_t t) {if (t == 0) cerr << 0;string S;while (t) S.push_back('0' + t % 10), t /= 10;reverse(begin(S), end(S));cerr << S;}template <typename U,enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>void dump(const U& t) {cerr << t;}template <typename T>void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {string res;if (t == Nyaan::inf) res = "inf";if constexpr (is_signed<T>::value) {if (t == -Nyaan::inf) res = "-inf";}if constexpr (sizeof(T) == 8) {if (t == Nyaan::infLL) res = "inf";if constexpr (is_signed<T>::value) {if (t == -Nyaan::infLL) res = "-inf";}}if (res.empty()) res = to_string(t);cerr << res;}template <typename T, typename U>void dump(const pair<T, U>&);template <typename T>void dump(const pair<T*, int>&);template <typename T>void dump(const T& t,enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {cerr << "[ ";for (auto it = t.begin(); it != t.end();) {dump(*it);cerr << (++it == t.end() ? "" : ", ");}cerr << " ]";}template <typename T, typename U>void dump(const pair<T, U>& t) {cerr << "( ";dump(t.first);cerr << ", ";dump(t.second);cerr << " )";}template <typename T>void dump(const pair<T*, int>& t) {cerr << "[ ";for (int i = 0; i < t.second; i++) {dump(t.first[i]);cerr << (i == t.second - 1 ? "" : ", ");}cerr << " ]";}void trace() { cerr << endl; }template <typename Head, typename... Tail>void trace(Head&& head, Tail&&... tail) {cerr << " ";dump(head);if (sizeof...(tail) != 0) cerr << ",";trace(forward<Tail>(tail)...);}} // namespace DebugImpl#ifdef NyaanDebug#define trc(...) \do { \cerr << "## " << #__VA_ARGS__ << " = "; \DebugImpl::trace(__VA_ARGS__); \} while (0)#else#define trc(...) (void(0))#endif// macro#define each(x, v) for (auto&& x : v)#define each2(x, y, v) for (auto&& [x, y] : v)#define all(v) (v).begin(), (v).end()#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)#define reg(i, a, b) for (long long i = (a); i < (b); i++)#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)#define fi first#define se second#define ini(...) \int __VA_ARGS__; \in(__VA_ARGS__)#define inl(...) \long long __VA_ARGS__; \in(__VA_ARGS__)#define ins(...) \string __VA_ARGS__; \in(__VA_ARGS__)#define in2(s, t) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i]); \}#define in3(s, t, u) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i]); \}#define in4(s, t, u, v) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i], v[i]); \}#define die(...) \do { \Nyaan::out(__VA_ARGS__); \return; \} while (0)namespace Nyaan {void solve();}int main() { Nyaan::solve(); }//template <uint32_t mod>struct LazyMontgomeryModInt {using mint = LazyMontgomeryModInt;using i32 = int32_t;using u32 = uint32_t;using u64 = uint64_t;static constexpr u32 get_r() {u32 ret = mod;for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;return ret;}static constexpr u32 r = get_r();static constexpr u32 n2 = -u64(mod) % mod;static_assert(r * mod == 1, "invalid, r * mod != 1");static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");u32 a;constexpr LazyMontgomeryModInt() : a(0) {}constexpr LazyMontgomeryModInt(const int64_t &b): a(reduce(u64(b % mod + mod) * n2)){};static constexpr u32 reduce(const u64 &b) {return (b + u64(u32(b) * u32(-r)) * mod) >> 32;}constexpr mint &operator+=(const mint &b) {if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}constexpr mint &operator-=(const mint &b) {if (i32(a -= b.a) < 0) a += 2 * mod;return *this;}constexpr mint &operator*=(const mint &b) {a = reduce(u64(a) * b.a);return *this;}constexpr mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}constexpr mint operator+(const mint &b) const { return mint(*this) += b; }constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }constexpr bool operator==(const mint &b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}constexpr bool operator!=(const mint &b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}constexpr mint operator-() const { return mint() - mint(*this); }constexpr mint pow(u64 n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}constexpr mint inverse() const { return pow(mod - 2); }friend ostream &operator<<(ostream &os, const mint &b) {return os << b.get();}friend istream &operator>>(istream &is, mint &b) {int64_t t;is >> t;b = LazyMontgomeryModInt<mod>(t);return (is);}constexpr u32 get() const {u32 ret = reduce(a);return ret >= mod ? ret - mod : ret;}static constexpr u32 get_mod() { return mod; }};template <typename T>struct Binomial {vector<T> f, g, h;Binomial(int MAX = 0) {assert(T::get_mod() != 0 && "Binomial<mint>()");f.resize(1, T{1});g.resize(1, T{1});h.resize(1, T{1});while (MAX >= (int)f.size()) extend();}void extend() {int n = f.size();int m = n * 2;f.resize(m);g.resize(m);h.resize(m);for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);g[m - 1] = f[m - 1].inverse();h[m - 1] = g[m - 1] * f[m - 2];for (int i = m - 2; i >= n; i--) {g[i] = g[i + 1] * T(i + 1);h[i] = g[i] * f[i - 1];}}T fac(int i) {if (i < 0) return T(0);while (i >= (int)f.size()) extend();return f[i];}T finv(int i) {if (i < 0) return T(0);while (i >= (int)g.size()) extend();return g[i];}T inv(int i) {if (i < 0) return -inv(-i);while (i >= (int)h.size()) extend();return h[i];}T C(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);return fac(n) * finv(n - r) * finv(r);}inline T operator()(int n, int r) { return C(n, r); }template <typename I>T multinomial(const vector<I>& r) {static_assert(is_integral<I>::value == true);int n = 0;for (auto& x : r) {if (x < 0) return T(0);n += x;}T res = fac(n);for (auto& x : r) res *= finv(x);return res;}template <typename I>T operator()(const vector<I>& r) {return multinomial(r);}T C_naive(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);T ret = T(1);r = min(r, n - r);for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);return ret;}T P(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);return fac(n) * finv(n - r);}T H(int n, int r) {if (n < 0 || r < 0) return T(0);return r == 0 ? 1 : C(n + r - 1, r);}};template <typename mint>struct NTT {static constexpr uint32_t get_pr() {uint32_t _mod = mint::get_mod();using u64 = uint64_t;u64 ds[32] = {};int idx = 0;u64 m = _mod - 1;for (u64 i = 2; i * i <= m; ++i) {if (m % i == 0) {ds[idx++] = i;while (m % i == 0) m /= i;}}if (m != 1) ds[idx++] = m;uint32_t _pr = 2;while (1) {int flg = 1;for (int i = 0; i < idx; ++i) {u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;while (b) {if (b & 1) r = r * a % _mod;a = a * a % _mod;b >>= 1;}if (r == 1) {flg = 0;break;}}if (flg == 1) break;++_pr;}return _pr;};static constexpr uint32_t mod = mint::get_mod();static constexpr uint32_t pr = get_pr();static constexpr int level = __builtin_ctzll(mod - 1);mint dw[level], dy[level];void setwy(int k) {mint w[level], y[level];w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));y[k - 1] = w[k - 1].inverse();for (int i = k - 2; i > 0; --i)w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];for (int i = 3; i < k; ++i) {dw[i] = dw[i - 1] * y[i - 2] * w[i];dy[i] = dy[i - 1] * w[i - 2] * y[i];}}NTT() { setwy(level); }void fft4(vector<mint> &a, int k) {if ((int)a.size() <= 1) return;if (k == 1) {mint a1 = a[1];a[1] = a[0] - a[1];a[0] = a[0] + a1;return;}if (k & 1) {int v = 1 << (k - 1);for (int j = 0; j < v; ++j) {mint ajv = a[j + v];a[j + v] = a[j] - ajv;a[j] += ajv;}}int u = 1 << (2 + (k & 1));int v = 1 << (k - 2 - (k & 1));mint one = mint(1);mint imag = dw[1];while (v) {// jh = 0{int j0 = 0;int j1 = v;int j2 = j1 + v;int j3 = j2 + v;for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];mint t0p2 = t0 + t2, t1p3 = t1 + t3;mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;}}// jh >= 1mint ww = one, xx = one * dw[2], wx = one;for (int jh = 4; jh < u;) {ww = xx * xx, wx = ww * xx;int j0 = jh * v;int je = j0 + v;int j2 = je + v;for (; j0 < je; ++j0, ++j2) {mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx;mint t0p2 = t0 + t2, t1p3 = t1 + t3;mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;}xx *= dw[__builtin_ctzll((jh += 4))];}u <<= 2;v >>= 2;}}void ifft4(vector<mint> &a, int k) {if ((int)a.size() <= 1) return;if (k == 1) {mint a1 = a[1];a[1] = a[0] - a[1];a[0] = a[0] + a1;return;}int u = 1 << (k - 2);int v = 1;mint one = mint(1);mint imag = dy[1];while (u) {// jh = 0{int j0 = 0;int j1 = v;int j2 = v + v;int j3 = j2 + v;for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];mint t0p1 = t0 + t1, t2p3 = t2 + t3;mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;}}// jh >= 1mint ww = one, xx = one * dy[2], yy = one;u <<= 2;for (int jh = 4; jh < u;) {ww = xx * xx, yy = xx * imag;int j0 = jh * v;int je = j0 + v;int j2 = je + v;for (; j0 < je; ++j0, ++j2) {mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];mint t0p1 = t0 + t1, t2p3 = t2 + t3;mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;}xx *= dy[__builtin_ctzll(jh += 4)];}u >>= 4;v <<= 2;}if (k & 1) {u = 1 << (k - 1);for (int j = 0; j < u; ++j) {mint ajv = a[j] - a[j + u];a[j] += a[j + u];a[j + u] = ajv;}}}void ntt(vector<mint> &a) {if ((int)a.size() <= 1) return;fft4(a, __builtin_ctz(a.size()));}void intt(vector<mint> &a) {if ((int)a.size() <= 1) return;ifft4(a, __builtin_ctz(a.size()));mint iv = mint(a.size()).inverse();for (auto &x : a) x *= iv;}vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {int l = a.size() + b.size() - 1;if (min<int>(a.size(), b.size()) <= 40) {vector<mint> s(l);for (int i = 0; i < (int)a.size(); ++i)for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];return s;}int k = 2, M = 4;while (M < l) M <<= 1, ++k;setwy(k);vector<mint> s(M), t(M);for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];fft4(s, k);fft4(t, k);for (int i = 0; i < M; ++i) s[i] *= t[i];ifft4(s, k);s.resize(l);mint invm = mint(M).inverse();for (int i = 0; i < l; ++i) s[i] *= invm;return s;}void ntt_doubling(vector<mint> &a) {int M = (int)a.size();auto b = a;intt(b);mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;ntt(b);copy(begin(b), end(b), back_inserter(a));}};template <typename mint>struct FormalPowerSeries : vector<mint> {using vector<mint>::vector;using FPS = FormalPowerSeries;FPS &operator+=(const FPS &r) {if (r.size() > this->size()) this->resize(r.size());for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];return *this;}FPS &operator+=(const mint &r) {if (this->empty()) this->resize(1);(*this)[0] += r;return *this;}FPS &operator-=(const FPS &r) {if (r.size() > this->size()) this->resize(r.size());for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];return *this;}FPS &operator-=(const mint &r) {if (this->empty()) this->resize(1);(*this)[0] -= r;return *this;}FPS &operator*=(const mint &v) {for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;return *this;}FPS &operator/=(const FPS &r) {if (this->size() < r.size()) {this->clear();return *this;}int n = this->size() - r.size() + 1;if ((int)r.size() <= 64) {FPS f(*this), g(r);g.shrink();mint coeff = g.back().inverse();for (auto &x : g) x *= coeff;int deg = (int)f.size() - (int)g.size() + 1;int gs = g.size();FPS quo(deg);for (int i = deg - 1; i >= 0; i--) {quo[i] = f[i + gs - 1];for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];}*this = quo * coeff;this->resize(n, mint(0));return *this;}return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();}FPS &operator%=(const FPS &r) {*this -= *this / r * r;shrink();return *this;}FPS operator+(const FPS &r) const { return FPS(*this) += r; }FPS operator+(const mint &v) const { return FPS(*this) += v; }FPS operator-(const FPS &r) const { return FPS(*this) -= r; }FPS operator-(const mint &v) const { return FPS(*this) -= v; }FPS operator*(const FPS &r) const { return FPS(*this) *= r; }FPS operator*(const mint &v) const { return FPS(*this) *= v; }FPS operator/(const FPS &r) const { return FPS(*this) /= r; }FPS operator%(const FPS &r) const { return FPS(*this) %= r; }FPS operator-() const {FPS ret(this->size());for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];return ret;}void shrink() {while (this->size() && this->back() == mint(0)) this->pop_back();}FPS rev() const {FPS ret(*this);reverse(begin(ret), end(ret));return ret;}FPS dot(FPS r) const {FPS ret(min(this->size(), r.size()));for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];return ret;}FPS pre(int sz) const {return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));}FPS operator>>(int sz) const {if ((int)this->size() <= sz) return {};FPS ret(*this);ret.erase(ret.begin(), ret.begin() + sz);return ret;}FPS operator<<(int sz) const {FPS ret(*this);ret.insert(ret.begin(), sz, mint(0));return ret;}FPS diff() const {const int n = (int)this->size();FPS ret(max(0, n - 1));mint one(1), coeff(1);for (int i = 1; i < n; i++) {ret[i - 1] = (*this)[i] * coeff;coeff += one;}return ret;}FPS integral() const {const int n = (int)this->size();FPS ret(n + 1);ret[0] = mint(0);if (n > 0) ret[1] = mint(1);auto mod = mint::get_mod();for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];return ret;}mint eval(mint x) const {mint r = 0, w = 1;for (auto &v : *this) r += w * v, w *= x;return r;}FPS log(int deg = -1) const {assert((*this)[0] == mint(1));if (deg == -1) deg = (int)this->size();return (this->diff() * this->inv(deg)).pre(deg - 1).integral();}FPS pow(int64_t k, int deg = -1) const {const int n = (int)this->size();if (deg == -1) deg = n;for (int i = 0; i < n; i++) {if ((*this)[i] != mint(0)) {if (i * k > deg) return FPS(deg, mint(0));mint rev = mint(1) / (*this)[i];FPS ret =(((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k));ret = (ret << (i * k)).pre(deg);if ((int)ret.size() < deg) ret.resize(deg, mint(0));return ret;}}return FPS(deg, mint(0));}static void *ntt_ptr;static void set_fft();FPS &operator*=(const FPS &r);void ntt();void intt();void ntt_doubling();static int ntt_pr();FPS inv(int deg = -1) const;FPS exp(int deg = -1) const;};template <typename mint>void *FormalPowerSeries<mint>::ntt_ptr = nullptr;/*** @brief 多項式/形式的冪級数ライブラリ* @docs docs/fps/formal-power-series.md*/template <typename mint>void FormalPowerSeries<mint>::set_fft() {if (!ntt_ptr) ntt_ptr = new NTT<mint>;}template <typename mint>FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(const FormalPowerSeries<mint>& r) {if (this->empty() || r.empty()) {this->clear();return *this;}set_fft();auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());}template <typename mint>void FormalPowerSeries<mint>::ntt() {set_fft();static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);}template <typename mint>void FormalPowerSeries<mint>::intt() {set_fft();static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);}template <typename mint>void FormalPowerSeries<mint>::ntt_doubling() {set_fft();static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);}template <typename mint>int FormalPowerSeries<mint>::ntt_pr() {set_fft();return static_cast<NTT<mint>*>(ntt_ptr)->pr;}template <typename mint>FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {assert((*this)[0] != mint(0));if (deg == -1) deg = (int)this->size();FormalPowerSeries<mint> res(deg);res[0] = {mint(1) / (*this)[0]};for (int d = 1; d < deg; d <<= 1) {FormalPowerSeries<mint> f(2 * d), g(2 * d);for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];for (int j = 0; j < d; j++) g[j] = res[j];f.ntt();g.ntt();for (int j = 0; j < 2 * d; j++) f[j] *= g[j];f.intt();for (int j = 0; j < d; j++) f[j] = 0;f.ntt();for (int j = 0; j < 2 * d; j++) f[j] *= g[j];f.intt();for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];}return res.pre(deg);}template <typename mint>FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {using fps = FormalPowerSeries<mint>;assert((*this).size() == 0 || (*this)[0] == mint(0));if (deg == -1) deg = this->size();fps inv;inv.reserve(deg + 1);inv.push_back(mint(0));inv.push_back(mint(1));auto inplace_integral = [&](fps& F) -> void {const int n = (int)F.size();auto mod = mint::get_mod();while ((int)inv.size() <= n) {int i = inv.size();inv.push_back((-inv[mod % i]) * (mod / i));}F.insert(begin(F), mint(0));for (int i = 1; i <= n; i++) F[i] *= inv[i];};auto inplace_diff = [](fps& F) -> void {if (F.empty()) return;F.erase(begin(F));mint coeff = 1, one = 1;for (int i = 0; i < (int)F.size(); i++) {F[i] *= coeff;coeff += one;}};fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};for (int m = 2; m < deg; m *= 2) {auto y = b;y.resize(2 * m);y.ntt();z1 = z2;fps z(m);for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];z.intt();fill(begin(z), begin(z) + m / 2, mint(0));z.ntt();for (int i = 0; i < m; ++i) z[i] *= -z1[i];z.intt();c.insert(end(c), begin(z) + m / 2, end(z));z2 = c;z2.resize(2 * m);z2.ntt();fps x(begin(*this), begin(*this) + min<int>(this->size(), m));x.resize(m);inplace_diff(x);x.push_back(mint(0));x.ntt();for (int i = 0; i < m; ++i) x[i] *= y[i];x.intt();x -= b.diff();x.resize(2 * m);for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);x.ntt();for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];x.intt();x.pop_back();inplace_integral(x);for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];fill(begin(x), begin(x) + m, mint(0));x.ntt();for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];x.intt();b.insert(end(b), begin(x) + m, end(x));}return fps{begin(b), begin(b) + deg};}/*** @brief NTT mod用FPSライブラリ* @docs docs/fps/ntt-friendly-fps.md*/template <typename fps>struct fps_fraction {using frac = fps_fraction;using mint = typename fps::value_type;fps p, q;fps_fraction(const fps& numerator = fps{0}, const fps& denominator = fps{1}): p(numerator), q(denominator) {}friend frac operator+(const frac& l, const frac& r) {return frac{l.p * r.q + r.p * l.q, l.q * r.q};}friend frac operator-(const frac& l, const frac& r) {return frac{l.p * r.q - r.p * l.q, l.q * r.q};}friend frac operator*(const frac& l, const frac& r) {return frac{l.p * r.p, l.q * r.q};}friend frac operator/(const frac& l, const frac& r) {return frac{l.p * r.q, l.q * r.p};}frac& operator+=(const mint& r) {(*this).p += (*this).q * r;return *this;}frac& operator-=(const mint& r) {(*this).p -= (*this).q * r;return *this;}frac& operator*=(const mint& r) {(*this).p *= r;return *this;}frac operator+(const mint& r) { return frac{*this} += r; }frac operator-(const mint& r) { return frac{*this} -= r; }frac operator*(const mint& r) { return frac{*this} *= r; }frac operator/(const mint& r) { return frac{*this} /= r; }frac& operator+=(const frac& r) { return *this = (*this) + r; }frac& operator-=(const frac& r) { return *this = (*this) - r; }frac& operator*=(const frac& r) { return *this = (*this) * r; }frac operator-() const { return frac{-p, q}; }frac inverse() const { return frac{q, p}; };void shrink() { p.shrink(), q.shrink(); }friend bool operator==(const frac& l, const frac& r) {return l.p == r.p && l.q == r.q;}friend bool operator!=(const frac& l, const frac& r) {return l.p != r.p || l.q != r.q;}friend ostream& operator<<(ostream& os, const frac& r) {os << "[ " << r.p << ", " << r.q << " ]";return os;}};template <typename mint>mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q,FormalPowerSeries<mint> P) {Q.shrink();mint ret = 0;if (P.size() >= Q.size()) {auto R = P / Q;P -= R * Q;P.shrink();if (k < (int)R.size()) ret += R[k];}if ((int)P.size() == 0) return ret;FormalPowerSeries<mint>::set_fft();if (FormalPowerSeries<mint>::ntt_ptr == nullptr) {P.resize((int)Q.size() - 1);while (k) {auto Q2 = Q;for (int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i];auto S = P * Q2;auto T = Q * Q2;if (k & 1) {for (int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i];for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];} else {for (int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i];for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];}k >>= 1;}return ret + P[0];} else {int N = 1;while (N < (int)Q.size()) N <<= 1;P.resize(2 * N);Q.resize(2 * N);P.ntt();Q.ntt();vector<mint> S(2 * N), T(2 * N);vector<int> btr(N);for (int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) {btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1));}mint dw = mint(FormalPowerSeries<mint>::ntt_pr()).inverse().pow((mint::get_mod() - 1) / (2 * N));while (k) {mint inv2 = mint(2).inverse();// even degree of Q(x)Q(-x)T.resize(N);for (int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1];S.resize(N);if (k & 1) {// odd degree of P(x)Q(-x)for (auto &i : btr) {S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] -P[(i << 1) | 1] * Q[(i << 1) | 0]) *inv2;inv2 *= dw;}} else {// even degree of P(x)Q(-x)for (int i = 0; i < N; i++) {S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] +P[(i << 1) | 1] * Q[(i << 1) | 0]) *inv2;}}swap(P, S);swap(Q, T);k >>= 1;if (k < N) break;P.ntt_doubling();Q.ntt_doubling();}P.intt();Q.intt();return ret + (P * (Q.inv()))[k];}}template <typename mint>mint kitamasa(long long N, FormalPowerSeries<mint> Q,FormalPowerSeries<mint> a) {assert(!Q.empty() && Q[0] != 0);if (N < (int)a.size()) return a[N];assert((int)a.size() >= int(Q.size()) - 1);auto P = a.pre((int)Q.size() - 1) * Q;P.resize(Q.size() - 1);return LinearRecurrence<mint>(N, Q, P);}/*** @brief 線形漸化式の高速計算* @docs docs/fps/kitamasa.md*/// #include "fps/arbitrary-fps.hpp"//using namespace Nyaan;using mint = LazyMontgomeryModInt<998244353>;// using mint = LazyMontgomeryModInt<1000000007>;using vm = vector<mint>;using vvm = vector<vm>;Binomial<mint> C;using fps = FormalPowerSeries<mint>;using namespace Nyaan;void q() {inl(N,M);if(M==1)die(0);using Frac=fps_fraction<fps>;V<Frac>fs;rep1(i,M){if(i==1)continue;fps p(i,1);p[0]=0;fps q(i+1);q[0]=1,q[i]=-1;fs.emplace_back(p,q+p);}while(sz(fs)>=2){V<Frac>nx;for(int i=0;i+1<sz(fs);i+=2){nx.push_back(fs[i]+fs[i+1]);}if(sz(fs)%2)nx.push_back(fs.back());swap(fs,nx);}Frac h=fs.back();fps p=h.q+h.p;fps q=h.q-h.p;out(LinearRecurrence(N,q,p)/2);}void Nyaan::solve() {int T = 1;// in(T);while (T--) q();}