結果
| 問題 |
No.1962 Not Divide
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2022-05-27 23:12:08 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,266 bytes |
| コンパイル時間 | 2,454 ms |
| コンパイル使用メモリ | 211,136 KB |
| 最終ジャッジ日時 | 2025-01-29 16:18:39 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 4 RE * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using Int = long long;
const char newl = '\n';
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}
template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}
template<typename T=Int>
vector<T> read(size_t n){
vector<T> ts(n);
for(size_t i=0;i<n;i++) cin>>ts[i];
return ts;
}
template<typename T, T MOD = 1000000007>
struct Mint{
inline static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator+() const{return *this;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
static Mint comb(long long n,Int k){
Mint num(1),dom(1);
for(Int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
// construct a charasteristic equation from sequence
// return a monic polynomial in O(n^2)
template<typename T>
vector<T> berlekamp_massey(vector<T> &as){
using Poly = vector<T>;
Int n=as.size();
Poly bs({-T(1)}),cs({-T(1)});
T y(1);
for(Int ed=1;ed<=n;ed++){
Int l=cs.size(),m=bs.size();
T x(0);
for(Int i=0;i<l;i++) x+=cs[i]*as[ed-l+i];
bs.emplace_back(0);
m++;
if(x==T(0)) continue;
T freq=x/y;
if(m<=l){
for(Int i=0;i<m;i++)
cs[l-1-i]-=freq*bs[m-1-i];
continue;
}
auto ts=cs;
cs.insert(cs.begin(),m-l,T(0));
for(Int i=0;i<m;i++) cs[m-1-i]-=freq*bs[m-1-i];
bs=ts;
y=x;
}
for(auto &c:cs) c/=cs.back();
return cs;
}
// O(N M)
template<typename T>
decltype(auto) naive(){
using Poly = vector<T>;
auto conv=[](Poly as, Poly bs){
Poly cs(as.size()+bs.size()-1,0);
for(Int i=0;i<(Int)as.size();i++)
for(Int j=0;j<(Int)bs.size();j++)
cs[i+j]+=as[i]*bs[j];
return cs;
};
return +conv;
}
// Find k-th term of linear recurrence
// execute `conv` O(\log k) times
template<typename T>
struct BostanMori{
using Poly = vector<T>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
BostanMori(Conv conv_):conv(conv_){}
Poly sub(Poly as,Int odd){
Poly bs((as.size()+!odd)/2);
for(Int i=odd;i<(Int)as.size();i+=2) bs[i/2]=as[i];
return bs;
}
// as: initial values
// cs: monic polynomial
T build(long long k,Poly as,Poly cs){
reverse(cs.begin(),cs.end());
assert(cs[0]==T(1));
Int n=cs.size()-1;
as.resize(n,0);
Poly bs=conv(as,cs);
bs.resize(n);
while(k){
Poly ds(cs);
for(Int i=1;i<(Int)ds.size();i+=2) ds[i]=-ds[i];
bs=sub(conv(bs,ds),k&1);
cs=sub(conv(cs,ds),0);
k>>=1;
}
return bs[0];
}
};
//INSERT ABOVE HERE
using M = Mint<Int, 998244353>;
const Int N = 2000;
M dp[N+1][101]={};
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
Int n,m;
cin>>n>>m;
if(m==1) drop(0);
if(m==2) drop(n&1);
assert(m<=20);
vector<M> as;
dp[0][0]=1;
for(Int l=0;l<N;l++){
M sum=0;
for(Int b=0;b<=m;b++){
sum+=dp[l][b];
}
for(Int x=1;x<=m;x++){
for(Int a=1;l+a<=N;a++){
if(a%x==0) continue;
dp[l+a][x]+=sum-dp[l][x];
}
}
if(l>0) as.emplace_back(sum);
}
BostanMori<M> bm(naive<M>());
cout<<bm.build(n-1,as,berlekamp_massey(as))<<endl;
return 0;
}
beet