結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-06-05 22:31:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 3,379 ms / 3,500 ms |
| コード長 | 3,005 bytes |
| コンパイル時間 | 198 ms |
| コンパイル使用メモリ | 82,496 KB |
| 実行使用メモリ | 338,528 KB |
| 最終ジャッジ日時 | 2024-09-21 04:20:10 |
| 合計ジャッジ時間 | 63,265 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 29 |
ソースコード
from collections import deque
MOD = 998244353
class FFT:
def __init__(self, MOD=998244353):
FFT.MOD = MOD
g = self.primitive_root_constexpr()
ig = pow(g, FFT.MOD - 2, FFT.MOD)
FFT.W = [pow(g, (FFT.MOD - 1) >> i, FFT.MOD) for i in range(30)]
FFT.iW = [pow(ig, (FFT.MOD - 1) >> i, FFT.MOD) for i in range(30)]
def primitive_root_constexpr(self):
if FFT.MOD == 998244353:
return 3
elif FFT.MOD == 200003:
return 2
elif FFT.MOD == 167772161:
return 3
elif FFT.MOD == 469762049:
return 3
elif FFT.MOD == 754974721:
return 11
divs = [0] * 20
divs[0] = 2
cnt = 1
x = (FFT.MOD - 1) // 2
while x % 2 == 0:
x //= 2
i = 3
while i * i <= x:
if x % i == 0:
divs[cnt] = i
cnt += 1
while x % i == 0:
x //= i
i += 2
if x > 1:
divs[cnt] = x
cnt += 1
g = 2
while 1:
ok = True
for i in range(cnt):
if pow(g, (FFT.MOD - 1) // divs[i], FFT.MOD) == 1:
ok = False
break
if ok:
return g
g += 1
def fft(self, k, f):
for l in range(k, 0, -1):
d = 1 << l - 1
U = [1]
for i in range(d):
U.append(U[-1] * FFT.W[l] % FFT.MOD)
for i in range(1 << k - l):
for j in range(d):
s = i * 2 * d + j
f[s], f[s + d] = (f[s] + f[s + d]) % FFT.MOD, U[j] * (f[s] - f[s + d]) % FFT.MOD
def ifft(self, k, f):
for l in range(1, k + 1):
d = 1 << l - 1
for i in range(1 << k - l):
u = 1
for j in range(i * 2 * d, (i * 2 + 1) * d):
f[j+d] *= u
f[j], f[j + d] = (f[j] + f[j + d]) % FFT.MOD, (f[j] - f[j + d]) % FFT.MOD
u = u * FFT.iW[l] % FFT.MOD
def convolve(self, A, B):
n0 = len(A) + len(B) - 1
k = (n0).bit_length()
n = 1 << k
A += [0] * (n - len(A))
B += [0] * (n - len(B))
self.fft(k, A)
self.fft(k, B)
A = [a * b % FFT.MOD for a, b in zip(A, B)]
self.ifft(k, A)
inv = pow(n, FFT.MOD - 2, FFT.MOD)
A = [a * inv % FFT.MOD for a in A]
del A[n0:]
return A
n, Q = map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
fft = FFT()
queue = deque()
poly = [None] * n
for i, a in enumerate(A):
poly[i] = [(a - 1) % MOD, 1]
queue.append(i)
while len(queue) >= 2:
i = queue.popleft()
j = queue.popleft()
poly[i] = fft.convolve(poly[i], poly[j])
queue.append(i)
i = queue.popleft()
F = poly[i]
for b in B:
print(F[b])