結果
問題 | No.1962 Not Divide |
ユーザー | uwi |
提出日時 | 2022-06-09 18:26:41 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 802 ms / 2,000 ms |
コード長 | 32,567 bytes |
コンパイル時間 | 6,608 ms |
コンパイル使用メモリ | 98,800 KB |
実行使用メモリ | 62,560 KB |
最終ジャッジ日時 | 2024-09-21 05:37:43 |
合計ジャッジ時間 | 19,843 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 246 ms
57,628 KB |
testcase_01 | AC | 245 ms
57,328 KB |
testcase_02 | AC | 404 ms
59,896 KB |
testcase_03 | AC | 686 ms
62,560 KB |
testcase_04 | AC | 339 ms
61,500 KB |
testcase_05 | AC | 655 ms
60,280 KB |
testcase_06 | AC | 744 ms
62,356 KB |
testcase_07 | AC | 393 ms
59,464 KB |
testcase_08 | AC | 710 ms
62,500 KB |
testcase_09 | AC | 568 ms
62,536 KB |
testcase_10 | AC | 420 ms
60,600 KB |
testcase_11 | AC | 609 ms
60,116 KB |
testcase_12 | AC | 467 ms
60,376 KB |
testcase_13 | AC | 419 ms
60,344 KB |
testcase_14 | AC | 667 ms
62,472 KB |
testcase_15 | AC | 364 ms
60,200 KB |
testcase_16 | AC | 399 ms
59,240 KB |
testcase_17 | AC | 639 ms
62,028 KB |
testcase_18 | AC | 247 ms
58,284 KB |
testcase_19 | AC | 223 ms
56,308 KB |
testcase_20 | AC | 793 ms
62,540 KB |
testcase_21 | AC | 802 ms
62,360 KB |
testcase_22 | AC | 773 ms
60,148 KB |
testcase_23 | AC | 760 ms
62,188 KB |
ソースコード
package contest220527; import java.io.*; import java.util.ArrayDeque; import java.util.Arrays; import java.util.InputMismatchException; import java.util.Queue; import java.util.function.IntUnaryOperator; import java.util.function.LongUnaryOperator; public class FX { InputStream is; FastWriter out; String INPUT = ""; public void solve() { // 数字iが連続する遷移を、 // f_i = sum_{j:iの倍数でない} x^j // で表す。 // また、本来求めたい多項式をHとし、数字iで終わる個数の多項式をh_iとすると、 // H = sum_i h_iである。ただし長さ0のところは0とする。 // 現在の数以外の遷移なので、次の式が成り立つ。 // h_i = (H-h_i+1)f_i // h_i(1+f_i) = (H+1)f_i // H = sum_i (H+1)f_i/(1+f_i) // H/(H+1) = sum_i f_i/(1+f_i) // Hが何次式かはわからないけど、右辺は計算できる // f_i = 1/(1-x) - 1/(1-x^i) int n = ni(), m = ni(); // 1-1/(1+f_i) int D = 11000; long[] r = new long[D]; r[0] = m-1; for(int i = 2;i <= m;i++){ // (x-1)(x^i-1)/((x-2)x^i+1) long[] f = new long[D]; f[0] = 1; f[1] = mod - 1; f[i+1] = 1; f[i] = mod - 1; for(int j = 2;j < D;j++){ if(j-i >= 0)f[j] += f[j-i] * 2; if(j-i-1 >= 0)f[j] -= f[j-i-1]; f[j] %= mod; if(f[j] < 0)f[j] += mod; } r = sub(r, f); } // tr(r); // H/(H+1) = r // H = (H+1)r // H = 1/(1-r)-1 long[] den = sub(new long[]{1}, r); long[] H = sub(inv(den), new long[]{1}); H[0] = 1; out.println(guess(H, mod, n)); } public static long bostanMori(long[] P, long[] Q, long n) { // P(x)Q(-x) while(n > 0) { if(Q.length > n+1)Q = Arrays.copyOf(Q, (int)n+1); if(P.length > n+1)P = Arrays.copyOf(P, (int)n+1); long[] QF = Arrays.copyOf(Q, Q.length); for (int i = 1; i < QF.length; i += 2) { QF[i] = Q[i] == 0 ? 0 : mod - Q[i]; } long[] PQF = mul(P, QF); long[] QQF = mul(Q, QF); Q = even(QQF); P = n % 2 == 0 ? even(PQF) : odd(PQF); n /= 2; } return P[0] * invl(Q[0], mod) % mod; } private static long[] even(long[] a) { long[] ret = new long[(a.length+1)/2]; for(int i = 0;i < a.length;i+=2){ ret[i/2] = a[i]; } return ret; } private static long[] odd(long[] a) { long[] ret = new long[a.length/2]; for(int i = 1;i < a.length;i+=2){ ret[i/2] = a[i]; } return ret; } public long guess(long[] a, int mod, long n) { if(a.length % 2 == 1)a = Arrays.copyOf(a, a.length/2*2); // strip to even length long[] q = modifiedBerlekampMassey(a, mod); q = rev(q); long[] aa = mul(a, q, q.length-1); return bostanMori(aa, q, n); } public static long[] rev(long[] a){long[] b = new long[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;} public static long lr(long[] a, long[] co, long n, long mod) { int m = a.length; if(m == 1){ long ret = a[0]; long mul = co[0]; for(;n > 0;n >>>= 1){ if((n&1)==1){ ret = (ret * mul) % mod; } mul = (mul * mul) % mod; } return ret; } long[][] m2 = new long[m-1][m]; System.arraycopy(co, 0, m2[0], 0, m); for(int i = 1;i < m-1;i++){ for(int j = 0;j < m;j++){ long x = m2[i-1][m-1] * co[j]; if(j-1 >= 0)x += m2[i-1][j-1]; m2[i][j] = x % mod; } } long[] ret = new long[m]; ret[0] = 1; long[] temp = new long[2*m]; for(int l = 62;l >= 0;l--){ if(n<<~l<0){ for(int i = 0;i < m;i++)temp[i] = ret[m-1] * co[i]; for(int i = 1;i < m;i++)temp[i] += ret[i-1]; for(int i = 0;i < m;i++)ret[i] = temp[i] % mod; } if(l > 0){ Arrays.fill(temp, 0L); for(int i = 0;i < m;i++){ for(int j = 0;j < m;j++){ temp[i+j] += ret[i] * ret[j] % mod; } } for(int i = 0;i < 2*m-1;i++){ temp[i] %= mod; } for(int i = 0;i < m;i++){ long s = temp[i]; for(int j = m;j < 2*m-1;j++){ s += temp[j] * m2[j-m][i] % mod; } ret[i] = s % mod; } } } long s = 0; for(int i = 0;i < m;i++){ s += ret[i] * a[i] % mod; } return s % mod; } public static long[] modifiedBerlekampMassey(long[] a, int mod) { assert a.length % 2 == 0; int n = a.length/2; int m = 2*n-1; long[] R0 = new long[2*n+1]; R0[2*n] = 1; long[] R1 = new long[2*n]; for(int i = 0;i < 2*n;i++)R1[i] = a[m-i]; R1 = strip(R1); long[][] IM0 = hgcd(R0, R1); long[] v1 = IM0[3]; // long[] v0 = {0L}; // long[] v1 = {1L}; // while(n <= R1.length-1){ // long[][] QR = divmod(R0, R1, mod); // long[] v = sub(v0, mul(QR[0], v1)); // v0 = v1; v1 = v; R0 = R1; R1 = QR[1]; // } // tr2(R0); // tr2(R1); // tr2(v1); // tr2("high"); // tr2(xv1); // for(long[] u : res){ // tr2(u); // } // normalize long z = invl(v1[v1.length-1], mod); for(int i = 0;i < v1.length;i++){ v1[i] = v1[i] * z % mod; } return strip(v1); } private static long[][] cogcdOnce(long[] p0, long[] p1) { assert p0.length > p1.length; long[][] ret = E; long[][] IM0 = hgcd(p0, p1); long[] p3 = mul2low(IM0, p0, p1); ret = mul22(IM0, ret); if (p3.length == 0) return ret; // long[] p2 = mul2high(IM0, p0, p1); // long[][] qr = div(p2, p3); // long[] p4 = qr[1]; // ret = mul22q(qr[0], ret); // if (p4.length == 0) return ret; return ret; } private static void tr2(Object... o) { System.out.println(Arrays.deepToString(o)); } public static long[] strip(long[] a) { int i; for(i = a.length-1;i > 0 && a[i] == 0;i--); if(i + 1 == a.length)return a; return Arrays.copyOf(a, i+1); } public static long[][] divmod(long[] A, long[] B, int mod) { assert B[B.length-1] != 0; long[] R = Arrays.copyOf(A, A.length); long[] Q = new long[Math.max(1, A.length-B.length+1)]; long ib = invl(B[B.length-1], mod); for(int i = A.length-1, t = Q.length-1;i >= B.length-1;i--,t--){ long m = R[i] * ib % mod; Q[t] = m; for(int j = 0, k = i-B.length+1+j;j < B.length;j++,k++){ R[k] -= B[j] * m; R[k] %= mod; if(R[k] < 0)R[k] += mod; } assert R[i] == 0; } return new long[][]{Q, strip(R)}; } private static final long[][] E = {{1},{},{},{1}}; public static long[] gcd(long[] a, long[] b) { a = clean(a); b = clean(b); if(a.length < b.length){ long[] d = a; a = b; b = d; } if (a.length == b.length) { long t = ((long)mod*mod - invl(a[a.length-1], mod) * b[b.length-1]) % mod; for(int i = 0;i < b.length;i++){ b[i] = (b[i] + a[i] * t) % mod; } b = clean(b); assert a.length > b.length; } long[][] ico = cogcd(a, b); long[] ret = clean(mul2high(ico, a, b)); // normalize (to monic) long c = invl(ret[ret.length-1], mod); for(int i = 0;i < ret.length;i++)ret[i] = ret[i] * c % mod; return ret; } public static long[][] exgcd(long[] a, long[] b) { a = clean(a); b = clean(b); if(a.length < b.length){ long[][] ret = exgcd(b, a); return new long[][]{ret[1], ret[0], ret[2]}; } if (a.length == b.length) { long t = ((long)mod*mod - invl(a[a.length-1], mod) * b[b.length-1]) % mod; for(int i = 0;i < b.length;i++){ b[i] = (b[i] + a[i] * t) % mod; } b = clean(b); assert a.length > b.length; long[][] ret = exgcd(a, b); // (A B)(a ) = (g) // (C D)(b+ta) (0) // (A+tB B)(a) = (g) // (C+tD D)(b) (0) ret[0] = clean(add(ret[0], mul(ret[1], t))); return ret; } long[][] ico = cogcd(a, b); long[] gcd = clean(mul2high(ico, a, b)); return new long[][]{ico[0], ico[1], gcd}; } private static long[][] cogcd(long[] p0, long[] p1) { assert p0.length > p1.length; long[][] ret = E; while(true) { long[][] IM0 = hgcd(p0, p1); long[] p3 = mul2low(IM0, p0, p1); ret = mul22(IM0, ret); if (p3.length == 0) return ret; long[] p2 = mul2high(IM0, p0, p1); long[][] qr = div(p2, p3); long[] p4 = qr[1]; ret = mul22q(qr[0], ret); if (p4.length == 0) return ret; p0 = p3; p1 = p4; } } private static long[][] hgcd(long[] a, long[] b) { if(b.length == 0)return E; int N = a.length-1; int M = b.length-1; assert N > M; int m = (N+1)/2; // the magic threshold if(M < m)return E; long[] a0 = Arrays.copyOfRange(a, m, a.length); long[] b0 = Arrays.copyOfRange(b, m, b.length); long[][] IR = hgcd(a0, b0); long[] bp = mul2low(IR, a, b); if(bp.length-1 < m)return IR; long[] ap = mul2high(IR, a, b); long[][] qr = div(ap, bp); long[] D = qr[1], C = bp; int l = bp.length-1; int k = 2*m-l; long[] C0 = Arrays.copyOfRange(C, k, C.length); long[] D0 = Arrays.copyOfRange(D, k, D.length); long[][] IS = hgcd(C0, D0); return clean(mul22(mul22q(IS, qr[0]), IR)); } /** * P(x)^nをm次まで求める。 * * Q(x)=P(x)^nとすると、 * Q'(x)=nP'(x)P(x)^{n-1}である。したがって、 * Q(x) = P(x) * Q'(x)/n/P'(x) * nP'(x)Q(x) = P(x)Q'(x)である。 * これのx^iの係数は、 * n(sum_j (i-j+1)p[i-j+1]*q[j]) = sum_j p[i-j]*(j+1)q[j+1] * となる。 * ここから、 * q[i+1] = (n(sum_j (i-j+1)p[i-j+1]*q[j]) - sum_{j=0}^{i-1} p[i-j]*(j+1)q[j+1]) / p[0] / (i+1) * が導かれる。sumは、iが大きくなっても|P|で抑えられるので、全体でO(|P|m)になる。 * 0<=i-j+1<|P| -> i+1-|P|<j<=i+1 * * またこれはnが負のときでも成立する。 * * @param P P[0] != 0 * @param n * @param m * @return */ public static long[] pow(long[] P, int n, int m) { long[] Q = new long[m+1]; long ip0 = invl(P[0], mod); Q[0] = n >= 0 ? pow(P[0], n, mod) : pow(ip0, n, mod); for(int i = 0;i < m;i++){ long s = 0; for(int j = Math.max(0, i+1-P.length+1);j <= i;j++){ s += (i-j+1) * P[i-j+1] % mod * Q[j]; if(s >= big)s -= big; } s %= mod; long t = 0; for(int j = Math.max(0, i-P.length+1);j <= i-1;j++){ t += (j+1) * P[i-j] % mod * Q[j+1]; if(t >= big)t -= big; } t %= mod; s = (s*n-t) % mod; if(s < 0)s += mod; Q[i+1] = s * ip0 % mod * invl(i+1, mod) % mod; } return Q; } /** * Pがsparseな場合のP^nをm次まで * O(|P|m). * NOT VERIFIED * * @param P [index, value] P[0] != 0 * @param n * @param m * @return */ public static long[] pow(long[][] P, int n, int m) { long[] Q = new long[m+1]; long p0 = 0; for(long[] u : P)if(u[0] == 0)p0 = u[1]; assert p0 != 0; long ip0 = invl(p0, mod); Q[0] = n >= 0 ? pow(p0, n, mod) : pow(ip0, n, mod); for(int i = 0;i < m;i++){ long s = 0; for (long[] u : P) { if (Math.max(0, i + 1 - P.length + 1) <= i - u[0] + 1 && i - u[0] + 1 <= i) { s += u[0] * u[1] % mod * Q[i - (int) u[0] + 1]; if(s >= big)s -= big; } } s %= mod; long t = 0; for(long[] u : P) { if (Math.max(0, i - P.length + 1) <= i - u[0] && i - u[0] <= i - 1) { t += (i-u[0]+1) * u[1] % mod * Q[i - (int) u[0] + 1]; if(t >= big)t -= big; } } t %= mod; s = (s*n-t) % mod; if(s < 0)s += mod; Q[i+1] = s * ip0 % mod * invl(i+1, mod) % mod; } return Q; } /** * n=500000, K=10^9でpowより1.76倍遅い * @param a * @param K * @return */ public static long[] powNaive(long[] a, int K) { int n = a.length; long[] ret = {1}; for(int d = 31-Integer.numberOfLeadingZeros(K);d >= 0;d--) { ret = mul(ret, ret, n); if(K<<~d<0) { ret = mul(ret, a, n); } } return ret; } public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } public static long[] reverse_(long[] p) { for(int i = 0, j = p.length-1;i < j;i++,j--){ long d = p[i]; p[i] = p[j]; p[j] = d; } return p; } public static long[] reverse(long[] p) { long[] ret = new long[p.length]; for(int i = 0;i < p.length;i++){ ret[i] = p[p.length-1-i]; } return ret; } public static long[] reverse(long[] p, int lim) { long[] ret = new long[lim]; for(int i = 0;i < lim && i < p.length;i++){ ret[i] = p[p.length-1-i]; } return ret; } // [quotient, remainder] // remainder can be empty. // // deg(f)=n, deg(g)=m, f=gq+r, f=gq+r. // f* = x^n*f(1/x), // t=g*^-1 mod x^(n-m+1), q=(tf* mod x^(n-m+1))* public static long[][] div(long[] f, long[] g) { int n = f.length, m = g.length; if(n < m)return new long[][]{new long[0], Arrays.copyOf(f, n)}; long[] rf = reverse(f, n-m+1); long[] rg = reverse(g, n-m+1); long[] rq = mul(rf, inv(rg), n-m+1); long[] q = reverse(rq, n-m+1); long[] r = sub(f, mul(q, g, m-1), m-1); return new long[][]{q, r}; } static long[] mul2high(long[][] x, long[] a, long[] b) { return clean(add(mul(x[0], a), mul(x[1], b))); } static long[] mul2low(long[][] x, long[] a, long[] b) { return clean(add(mul(x[2], a), mul(x[3], b))); } static long[] clean(long[] a) { for(int i = a.length-1;i >= 0;i--){ if(a[i] != 0)return i == a.length-1 ? a : Arrays.copyOf(a, i+1); } return new long[0]; } static long[][] clean(long[][] a) { for(int i = 0;i < a.length;i++)a[i] = clean(a[i]); return a; } static long[][] mul22(long[][] A, long[][] B) { assert A.length == 4; assert B.length == 4; long[][] C = new long[4][]; C[0] = clean(add(mul(A[0], B[0]), mul(A[1], B[2]))); C[1] = clean(add(mul(A[0], B[1]), mul(A[1], B[3]))); C[2] = clean(add(mul(A[2], B[0]), mul(A[3], B[2]))); C[3] = clean(add(mul(A[2], B[1]), mul(A[3], B[3]))); return C; } static long[][] mul22q(long[][] A, long[] q) { assert A.length == 4; long[][] C = new long[4][]; C[0] = flip(A[1]); C[1] = clean(sub(mul(A[1], q), A[0])); C[2] = flip(A[3]); C[3] = clean(sub(mul(A[3], q), A[2])); return C; } static long[][] mul22q(long[] q, long[][] A) { assert A.length == 4; long[][] C = new long[4][]; C[0] = flip(A[2]); C[1] = flip(A[3]); C[2] = clean(sub(mul(A[2], q), A[0])); C[3] = clean(sub(mul(A[3], q), A[1])); return C; } static long[] flip(long[] a) { long[] ret = Arrays.copyOf(a, a.length); for(int i = 0;i < a.length;i++){ ret[i] = mod - a[i]; if(ret[i] == mod)ret[i] = 0; } return ret; } public static final int mod = 998244353; public static final int G = 3; // only 998244353 public static long[] mul(long[] a, long[] b) { if(a.length == 0 && b.length == 0)return new long[0]; if(a.length + b.length >= 300) { return Arrays.copyOf(NTTStockham998244353.convolve(a, b), a.length + b.length - 1); }else{ return mulnaive(a, b); } } public static long[] mul(long[] a, long[] b, int lim) { if(a.length + b.length >= 300) { return Arrays.copyOf(NTTStockham998244353.convolve(a, b), lim); }else{ return mulnaive(a, b, lim); } } // public static final int mod = 1000000007; // public static long[] mul(long[] a, long[] b) // { // if(Math.max(a.length, b.length) >= 3000){ // return Arrays.copyOf(NTTCRT.convolve(a, b, 3, mod), a.length+b.length-1); // }else{ // return mulnaive(a, b); // } // } // public static long[] mul(long[] a, long[] b, int lim) // { // if(Math.max(a.length, b.length) >= 3000){ // return Arrays.copyOf(NTTCRT.convolve(a, b, 3, mod), lim); // }else{ // return mulnaive(a, b, lim); // } // } public static final long big = (Long.MAX_VALUE/mod/mod-1)*mod*mod; public static long[] mulnaive(long[] a, long[] b) { long[] c = new long[a.length+b.length-1]; for(int i = 0;i < a.length;i++){ for(int j = 0;j < b.length;j++){ c[i+j] += a[i]*b[j]; if(c[i+j] >= big)c[i+j] -= big; } } for(int i = 0;i < c.length;i++)c[i] %= mod; return c; } public static long[] mulnaive(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length;i++){ for(int j = 0;j < b.length && i+j < lim;j++){ c[i+j] += a[i]*b[j]; if(c[i+j] >= big)c[i+j] -= big; } } for(int i = 0;i < c.length;i++)c[i] %= mod; return c; } public static long[] mul_(long[] a, long k) { for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod; return a; } public static long[] mul(long[] a, long k) { a = Arrays.copyOf(a, a.length); for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod; return a; } public static long[] add(long[] a, long[] b) { long[] c = new long[Math.max(a.length, b.length)]; for(int i = 0;i < a.length;i++)c[i] += a[i]; for(int i = 0;i < b.length;i++)c[i] += b[i]; for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod; return c; } public static long[] add(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i]; for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i]; for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod; return c; } public static long[] sub(long[] a, long[] b) { long[] c = new long[Math.max(a.length, b.length)]; for(int i = 0;i < a.length;i++)c[i] += a[i]; for(int i = 0;i < b.length;i++)c[i] -= b[i]; for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod; return c; } public static long[] sub(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i]; for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i]; for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod; return c; } // F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x) // if want p-destructive, comment out flipping p just before returning. public static long[] inv(long[] p) { int n = p.length; long[] f = {invl(p[0], mod)}; for(int i = 0;i < p.length;i++){ if(p[i] == 0)continue; p[i] = mod-p[i]; } for(int i = 1;i < 2*n;i*=2){ long[] f2 = mul(f, f, Math.min(n, 2*i)); long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i)); for(int j = 0;j < f.length;j++){ f2p[j] += 2L*f[j]; if(f2p[j] >= mod)f2p[j] -= mod; if(f2p[j] >= mod)f2p[j] -= mod; } f = f2p; } for(int i = 0;i < p.length;i++){ if(p[i] == 0)continue; p[i] = mod-p[i]; } return f; } // differentiate public static long[] d(long[] p) { long[] q = new long[p.length]; for(int i = 0;i < p.length-1;i++){ q[i] = p[i+1] * (i+1) % mod; } return q; } // integrate public static long[] i(long[] p) { long[] q = new long[p.length]; for(int i = 0;i < p.length-1;i++){ q[i+1] = p[i] * invl(i+1, mod) % mod; } return q; } public static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } public static class NTTStockham998244353 { private static final int P = 998244353, mod = P, G = 3; private static long[] wps; public static long[] convolve(long[] a, long[] b) { int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2); wps = new long[m]; long unit = pow(G, (P-1)/m); wps[0] = 1; for(int p = 1;p < m;p++) { wps[p] = wps[p-1] * unit % mod; } long[] fa = go(a, m, false); long[] fb = a == b ? fa : go(b, m, false); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i] % mod; } fa = go(fa, m, true); for(int i = 1, j = m-1;i < j;i++,j--) { long d = fa[i]; fa[i] = fa[j]; fa[j] = d; } return fa; } private static void fft(long[] X, long[] Y) { int s = 1; boolean eo = false; for(int n = X.length;n >= 4;n /= 2) { int m = n/2; for(int p = 0;p < m;p++) { long wp = wps[s*p]; long wk = (wp<<32)/P; for(int q = 0;q < s;q++) { long a = X[q + s*(p+0)]; long b = X[q + s*(p+m)]; long ndsts = a + b; if(ndsts >= 2*P)ndsts -= 2*P; long T = a - b + 2*P; long Q = wk*T>>>32; Y[q + s*(2*p+0)] = ndsts; Y[q + s*(2*p+1)] = wp*T-Q*P&(1L<<32)-1; } } s *= 2; eo = !eo; long[] D = X; X = Y; Y = D; } long[] z = eo ? Y : X; for(int q = 0;q < s;q++) { long a = X[q + 0]; long b = X[q + s]; z[q+0] = (a+b) % P; z[q+s] = (a-b+2*P) % P; } } // private static void fft(long[] X, long[] Y) // { // int s = 1; // boolean eo = false; // for(int n = X.length;n >= 4;n /= 2) { // int m = n/2; // for(int p = 0;p < m;p++) { // long wp = wps[s*p]; // for(int q = 0;q < s;q++) { // long a = X[q + s*(p+0)]; // long b = X[q + s*(p+m)]; // Y[q + s*(2*p+0)] = (a+b) % P; // Y[q + s*(2*p+1)] = (a-b+P) * wp % P; // } // } // s *= 2; // eo = !eo; // long[] D = X; X = Y; Y = D; // } // long[] z = eo ? Y : X; // for(int q = 0;q < s;q++) { // long a = X[q + 0]; // long b = X[q + s]; // z[q+0] = (a+b) % P; // z[q+s] = (a-b+P) % P; // } // } private static long[] go(long[] src, int n, boolean inverse) { long[] dst = Arrays.copyOf(src, n); fft(dst, new long[n]); if(inverse){ long in = invl(n); for(int i = 0;i < n;i++){ dst[i] = dst[i] * in % mod; } } return dst; } private static long pow(long a, long n) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret*ret % mod; if (n<<~x<0)ret = ret*a%mod; } return ret; } private static long invl(long a) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } } public static void main(String[] args) { new FX().run(); } public void run() { long S = System.currentTimeMillis(); is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new FastWriter(System.out); solve(); out.flush(); long G = System.currentTimeMillis(); tr(G-S+"ms"); // Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ // @Override // public void run() { // long s = System.currentTimeMillis(); // solve(); // out.flush(); // if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // } // }; // t.start(); // t.join(); } private boolean eof() { if(lenbuf == -1)return true; int lptr = ptrbuf; while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false; try { is.mark(1000); while(true){ int b = is.read(); if(b == -1){ is.reset(); return true; }else if(!isSpaceChar(b)){ is.reset(); return false; } } } catch (IOException e) { return true; } } private final byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } // private boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[][] nmi(int n, int m) { int[][] map = new int[n][]; for(int i = 0;i < n;i++)map[i] = na(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private long[] nal(int n) { long[] a = new long[n]; for(int i = 0;i < n;i++)a[i] = nl(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } public static class FastWriter { private static final int BUF_SIZE = 1<<13; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastWriter(){out = null;} public FastWriter(OutputStream os) { this.out = os; } public FastWriter(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastWriter write(byte b) { buf[ptr++] = b; if(ptr == BUF_SIZE)innerflush(); return this; } public FastWriter write(char c) { return write((byte)c); } public FastWriter write(char[] s) { for(char c : s){ buf[ptr++] = (byte)c; if(ptr == BUF_SIZE)innerflush(); } return this; } public FastWriter write(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte)c; if(ptr == BUF_SIZE)innerflush(); }); return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastWriter write(int x) { if(x == Integer.MIN_VALUE){ return write((long)x); } if(ptr + 12 >= BUF_SIZE)innerflush(); if(x < 0){ write((byte)'-'); x = -x; } int d = countDigits(x); for(int i = ptr + d - 1;i >= ptr;i--){ buf[i] = (byte)('0'+x%10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastWriter write(long x) { if(x == Long.MIN_VALUE){ return write("" + x); } if(ptr + 21 >= BUF_SIZE)innerflush(); if(x < 0){ write((byte)'-'); x = -x; } int d = countDigits(x); for(int i = ptr + d - 1;i >= ptr;i--){ buf[i] = (byte)('0'+x%10); x /= 10; } ptr += d; return this; } public FastWriter write(double x, int precision) { if(x < 0){ write('-'); x = -x; } x += Math.pow(10, -precision)/2; // if(x < 0){ x = 0; } write((long)x).write("."); x -= (long)x; for(int i = 0;i < precision;i++){ x *= 10; write((char)('0'+(int)x)); x -= (int)x; } return this; } public FastWriter writeln(char c){ return write(c).writeln(); } public FastWriter writeln(int x){ return write(x).writeln(); } public FastWriter writeln(long x){ return write(x).writeln(); } public FastWriter writeln(double x, int precision){ return write(x, precision).writeln(); } public FastWriter write(int... xs) { boolean first = true; for(int x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter write(long... xs) { boolean first = true; for(long x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter write(IntUnaryOperator f, int... xs) { boolean first = true; for(int x : xs) { if (!first) write(' '); first = false; write(f.applyAsInt(x)); } return this; } public FastWriter write(LongUnaryOperator f, long... xs) { boolean first = true; for(long x : xs) { if (!first) write(' '); first = false; write(f.applyAsLong(x)); } return this; } public FastWriter writeln() { return write((byte)'\n'); } public FastWriter writeln(int... xs) { return write(xs).writeln(); } public FastWriter writeln(long... xs) { return write(xs).writeln(); } public FastWriter writeln(IntUnaryOperator f, int... xs) { return write(f, xs).writeln(); } public FastWriter writeln(LongUnaryOperator f, long... xs) { return write(f, xs).writeln(); } public FastWriter writeln(char[] line) { return write(line).writeln(); } public FastWriter writeln(char[]... map) { for(char[] line : map)write(line).writeln();return this; } public FastWriter writeln(String s) { return write(s).writeln(); } private void innerflush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerflush"); } } public void flush() { innerflush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } public FastWriter print(byte b) { return write(b); } public FastWriter print(char c) { return write(c); } public FastWriter print(char[] s) { return write(s); } public FastWriter print(String s) { return write(s); } public FastWriter print(int x) { return write(x); } public FastWriter print(long x) { return write(x); } public FastWriter print(double x, int precision) { return write(x, precision); } public FastWriter println(char c){ return writeln(c); } public FastWriter println(int x){ return writeln(x); } public FastWriter println(long x){ return writeln(x); } public FastWriter println(double x, int precision){ return writeln(x, precision); } public FastWriter print(int... xs) { return write(xs); } public FastWriter print(long... xs) { return write(xs); } public FastWriter print(IntUnaryOperator f, int... xs) { return write(f, xs); } public FastWriter print(LongUnaryOperator f, long... xs) { return write(f, xs); } public FastWriter println(int... xs) { return writeln(xs); } public FastWriter println(long... xs) { return writeln(xs); } public FastWriter println(IntUnaryOperator f, int... xs) { return writeln(f, xs); } public FastWriter println(LongUnaryOperator f, long... xs) { return writeln(f, xs); } public FastWriter println(char[] line) { return writeln(line); } public FastWriter println(char[]... map) { return writeln(map); } public FastWriter println(String s) { return writeln(s); } public FastWriter println() { return writeln(); } } public static void trnz(int... o) { for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" "); System.out.println(); } // print ids which are 1 public static void trt(long... o) { Queue<Integer> stands = new ArrayDeque<>(); for(int i = 0;i < o.length;i++){ for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x)); } System.out.println(stands); } public static void tf(boolean... r) { for(boolean x : r)System.out.print(x?'#':'.'); System.out.println(); } public static void tf(boolean[]... b) { for(boolean[] r : b) { for(boolean x : r)System.out.print(x?'#':'.'); System.out.println(); } System.out.println(); } public void tf(long[]... b) { if(INPUT.length() != 0) { for (long[] r : b) { for (long x : r) { for (int i = 0; i < 64; i++) { System.out.print(x << ~i < 0 ? '#' : '.'); } } System.out.println(); } System.out.println(); } } public void tf(long... b) { if(INPUT.length() != 0) { for (long x : b) { for (int i = 0; i < 64; i++) { System.out.print(x << ~i < 0 ? '#' : '.'); } } System.out.println(); } } private void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); } }