結果

問題 No.1985 [Cherry 4th Tune] Early Summer Rain
ユーザー suisen
提出日時 2022-06-17 22:48:17
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 39,696 bytes
コンパイル時間 2,978 ms
コンパイル使用メモリ 318,212 KB
最終ジャッジ日時 2025-01-29 22:30:13
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In instantiation of ‘void read(Args& ...) [with Args = {atcoder::static_modint<998244353, 0>}]’:
main.cpp:1038:13:   required from here
main.cpp:281:25: error: no match for ‘operator>>’ (operand types are ‘std::istream’ {aka ‘std::basic_istream<char>’} and ‘atcoder::static_modint<998244353>’)
  281 |     (std::cin >> ... >> args);
      |     ~~~~~~~~~~~~~~~~~~~~^~~~~
In file included from /usr/include/c++/13/sstream:40,
                 from /usr/include/c++/13/complex:45,
                 from /usr/include/c++/13/ccomplex:39,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:127,
                 from main.cpp:1:
/usr/include/c++/13/istream:325:7: note: candidate: ‘std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(void*&) [with _CharT = char; _Traits = std::char_traits<char>; __istream_type = std::basic_istream<char>]’
  325 |       operator>>(void*& __p)
      |       ^~~~~~~~
/usr/include/c++/13/istream:325:25: note:   no known conversion for argument 1 from ‘atcoder::static_modint<998244353>’ to ‘void*&’
  325 |       operator>>(void*& __p)
      |                  ~~~~~~~^~~
/usr/include/c++/13/istream:224:7: note: candidate: ‘std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long double&) [with _CharT = char; _Traits = std::char_traits<char>; __istream_type = std::basic_istream<char>]’
  224 |       operator>>(long double& __f)
      |       ^~~~~~~~
/usr/include/c++/13/istream:224:31: note:   no known conversion for argument 1 from ‘atcoder::static_modint<998244353>’ to ‘long double&’
  224 |       operator>>(long double& __f)
      |                  ~~~~~~~~~~~~~^~~
/usr/include/c++/13/istream:220:7: note: candidate: ‘std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(double&) [with _CharT = char; _Traits = std::char_traits<char>

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#ifdef _MSC_VER
# include <intrin.h>
#else
# include <x86intrin.h>
#endif
#include <limits>
#include <type_traits>
namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
if constexpr (cond_v) {
return std::forward<Then>(then);
} else {
return std::forward<OrElse>(or_else);
}
}
// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;
template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;
// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;
// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long int> { using type = __uint128_t; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void>
struct rec_value_type {
using type = T;
};
template <typename T>
struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T>
using rec_value_type_t = typename rec_value_type<T>::type;
} // namespace suisen
// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T, typename U>
using umap = std::unordered_map<T, U>;
// ! macros (capital: internal macro)
#define OVERLOAD2(_1,_2,name,...) name
#define OVERLOAD3(_1,_2,_3,name,...) name
#define OVERLOAD4(_1,_2,_3,_4,name,...) name
#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define REP3(i,l,r) REP4(i,l,r,1)
#define REP2(i,n) REP3(i,0,n)
#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define REPINF2(i,l) REPINF3(i,l,1)
#define REPINF1(i) REPINF2(i,0)
#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define RREP3(i,l,r) RREP4(i,l,r,1)
#define RREP2(i,n) RREP3(i,0,n)
#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)
#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)
#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)
#define CAT_I(a, b) a##b
#define CAT(a, b) CAT_I(a, b)
#define UNIQVAR(tag) CAT(tag, __LINE__)
#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)
#define all(iterable) std::begin(iterable), std::end(iterable)
#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)
#ifdef LOCAL
# define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__)
template <class T, class... Args>
void debug_internal(const char* s, T&& first, Args&&... args) {
constexpr const char* prefix = "[\033[32mDEBUG\033[m] ";
constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "(";
constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")";
std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first);
((std::cerr << ", " << std::forward<Args>(args)), ...);
std::cerr << close_brakets << "\n";
}
#else
# define debug(...) void(0)
#endif
// ! I/O utilities
// __int128_t
std::ostream& operator<<(std::ostream& dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char* d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// __uint128_t
std::ostream& operator<<(std::ostream& dest, __uint128_t value) {
std::ostream::sentry s(dest);
if (s) {
char buffer[128];
char* d = std::end(buffer);
do {
--d;
*d = "0123456789"[value % 10];
value /= 10;
} while (value != 0);
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) {
return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return out;
} else {
out << std::get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {
out << ' ';
}
return operator<<<N + 1>(out, a);
}
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head& head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
__int128_t parse_i128(std::string& s) {
__int128_t ret = 0;
for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
if (s[0] == '-') ret = -ret;
return ret;
}
__uint128_t parse_u128(std::string& s) {
__uint128_t ret = 0;
for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
return ret;
}
// __int128_t
std::istream& operator>>(std::istream& in, __int128_t& v) {
std::string s;
in >> s;
v = parse_i128(s);
return in;
}
// __uint128_t
std::istream& operator>>(std::istream& in, __uint128_t& v) {
std::string s;
in >> s;
v = parse_u128(s);
return in;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U>& a) {
return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return in;
} else {
return operator>><N + 1>(in >> std::get<N>(a), a);
}
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T>& a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N>& a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
template <typename ...Args>
void read(Args &...args) {
(std::cin >> ... >> args);
}
// ! integral utilities
// Returns pow(-1, n)
template <typename T>
constexpr inline int pow_m1(T n) {
return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <>
constexpr inline int pow_m1<bool>(bool n) {
return -int(n) | 1;
}
// Returns floor(x / y)
template <typename T>
constexpr inline T fld(const T x, const T y) {
return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T>
constexpr inline T cld(const T x, const T y) {
return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T>
constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> -1 - count_lz(x); }
template <typename T>
constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T>
constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T>
constexpr inline int parity(const T x) { return popcount(x) & 1; }
// ! container
template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>
auto priqueue_comp(const Comparator comparator) {
return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}
template <typename Iterable>
auto isize(const Iterable& iterable) -> decltype(int(iterable.size())) {
return iterable.size();
}
template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>
auto generate_vector(int n, Gen generator) {
std::vector<T> v(n);
for (int i = 0; i < n; ++i) v[i] = generator(i);
return v;
}
template <typename T>
auto generate_range_vector(T l, T r) {
return generate_vector(r - l, [l](int i) { return l + i; });
}
template <typename T>
auto generate_range_vector(T n) {
return generate_range_vector(0, n);
}
template <typename T>
void sort_unique_erase(std::vector<T>& a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) {
foreach_adjacent_values(c.begin(), c.end(), f);
}
// ! other utilities
// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T& x, const T& y) {
if (y >= x) return false;
x = y;
return true;
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T& x, const T& y) {
if (y <= x) return false;
x = y;
return true;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::string bin(T val, int bit_num = -1) {
std::string res;
if (bit_num >= 0) {
for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1);
} else {
for (; val; val >>= 1) res += '0' + (val & 1);
std::reverse(res.begin(), res.end());
}
return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_low_to_high(T val, T base = 10) {
std::vector<T> res;
for (; val; val /= base) res.push_back(val % base);
if (res.empty()) res.push_back(T{ 0 });
return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_high_to_low(T val, T base = 10) {
auto res = digits_low_to_high(val, base);
std::reverse(res.begin(), res.end());
return res;
}
template <typename T>
std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) {
std::ostringstream ss;
for (auto it = v.begin(); it != v.end();) {
ss << *it;
if (++it != v.end()) ss << sep;
}
ss << end;
return ss.str();
}
namespace suisen {}
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_ {};
// ! code from here
#include <atcoder/modint>
#include <atcoder/convolution>
using mint = atcoder::modint998244353;
std::istream& operator>>(std::istream& in, mint &a) {
long long e; in >> e; a = e;
return in;
}
std::ostream& operator<<(std::ostream& out, const mint &a) {
out << a.val();
return out;
}
#include <algorithm>
#include <cassert>
#include <iostream>
#include <cmath>
#include <vector>
#include <optional>
namespace suisen {
/**
* refernce: https://37zigen.com/tonelli-shanks-algorithm/
* calculates x s.t. x^2 = a mod p in O((log p)^2).
*/
template <typename mint>
std::optional<mint> optional_sqrt(mint a) {
static int p = mint::mod();
if (a == 0) return std::make_optional(0);
if (p == 2) return std::make_optional(a);
if (a.pow((p - 1) / 2) != 1) return std::nullopt;
mint b = 1;
while (b.pow((p - 1) / 2) == 1) ++b;
static int tlz = __builtin_ctz(p - 1), q = (p - 1) >> tlz;
mint x = a.pow((q + 1) / 2);
b = b.pow(q);
for (int shift = 2; x * x != a; ++shift) {
mint e = a.inv() * x * x;
if (e.pow(1 << (tlz - shift)) != 1) x *= b;
b *= b;
}
return std::make_optional(x);
}
};
/**
* calculates x s.t. x^2 = a mod p in O((log p)^2).
* if not exists, raises runtime error.
*/
template <typename mint>
auto sqrt(mint a) -> decltype(mint::mod(), mint()) {
return *suisen::optional_sqrt(a);
}
template <typename mint>
auto log(mint a) -> decltype(mint::mod(), mint()) {
assert(a == 1);
return 0;
}
template <typename mint>
auto exp(mint a) -> decltype(mint::mod(), mint()) {
assert(a == 0);
return 1;
}
template <typename mint, typename T>
auto pow(mint a, T b) -> decltype(mint::mod(), mint()) {
return a.pow(b);
}
template <typename mint>
auto inv(mint a) -> decltype(mint::mod(), mint()) {
return a.inv();
}
namespace suisen {
template <typename mint>
class inv_mods {
public:
inv_mods() {}
inv_mods(int n) { ensure(n); }
const mint& operator[](int i) const {
ensure(i);
return invs[i];
}
static void ensure(int n) {
int sz = invs.size();
if (sz < 2) invs = {0, 1}, sz = 2;
if (sz < n + 1) {
invs.resize(n + 1);
for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i];
}
}
private:
static std::vector<mint> invs;
static constexpr int mod = mint::mod();
};
template <typename mint>
std::vector<mint> inv_mods<mint>::invs{};
}
namespace suisen {
template <typename T>
struct FPSNaive : std::vector<T> {
static inline int MAX_DEG = std::numeric_limits<int>::max() / 2;
using value_type = T;
using element_type = rec_value_type_t<T>;
using std::vector<value_type>::vector;
FPSNaive(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {}
static void set_max_deg(int max_deg) {
FPSNaive<T>::MAX_DEG = max_deg;
}
const value_type operator[](int n) const {
return n <= deg() ? unsafe_get(n) : value_type{ 0 };
}
value_type& operator[](int n) {
return ensure_deg(n), unsafe_get(n);
}
int size() const {
return std::vector<value_type>::size();
}
int deg() const {
return size() - 1;
}
int normalize() {
while (size() and this->back() == value_type{ 0 }) this->pop_back();
return deg();
}
FPSNaive& cut_inplace(int max_deg) {
if (deg() > max_deg) this->resize(std::max(0, max_deg + 1));
return *this;
}
FPSNaive cut(int max_deg) const {
return FPSNaive(*this).cut_inplace(max_deg);
}
FPSNaive operator+() const {
return FPSNaive(*this);
}
FPSNaive operator-() const {
FPSNaive f(*this);
for (auto& e : f) e = -e;
return f;
}
FPSNaive& operator++() { return ++(*this)[0], * this; }
FPSNaive& operator--() { return --(*this)[0], * this; }
FPSNaive& operator+=(const value_type x) { return (*this)[0] += x, *this; }
FPSNaive& operator-=(const value_type x) { return (*this)[0] -= x, *this; }
FPSNaive& operator+=(const FPSNaive& g) {
ensure_deg(g.deg());
for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i);
return *this;
}
FPSNaive& operator-=(const FPSNaive& g) {
ensure_deg(g.deg());
for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i);
return *this;
}
FPSNaive& operator*=(const FPSNaive& g) { return *this = *this * g; }
FPSNaive& operator*=(const value_type x) {
for (auto& e : *this) e *= x;
return *this;
}
FPSNaive& operator/=(const FPSNaive& g) { return *this = *this / g; }
FPSNaive& operator%=(const FPSNaive& g) { return *this = *this % g; }
FPSNaive& operator<<=(const int shamt) {
this->insert(this->begin(), shamt, value_type { 0 });
return *this;
}
FPSNaive& operator>>=(const int shamt) {
if (shamt > size()) this->clear();
else this->erase(this->begin(), this->begin() + shamt);
return *this;
}
friend FPSNaive operator+(FPSNaive f, const FPSNaive& g) { f += g; return f; }
friend FPSNaive operator+(FPSNaive f, const value_type &x) { f += x; return f; }
friend FPSNaive operator-(FPSNaive f, const FPSNaive& g) { f -= g; return f; }
friend FPSNaive operator-(FPSNaive f, const value_type &x) { f -= x; return f; }
friend FPSNaive operator*(const FPSNaive &f, const FPSNaive& g) {
if (f.empty() or g.empty()) return FPSNaive{};
const int n = f.size(), m = g.size();
FPSNaive h(std::min(MAX_DEG + 1, n + m - 1));
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) {
if (i + j > MAX_DEG) break;
h.unsafe_get(i + j) += f.unsafe_get(i) * g.unsafe_get(j);
}
return h;
}
friend FPSNaive operator*(FPSNaive f, const value_type &x) { f *= x; return f; }
friend FPSNaive operator/(FPSNaive f, FPSNaive g) { return std::move(div_mod(std::move(f), std::move(g)).first); }
friend FPSNaive operator%(FPSNaive f, FPSNaive g) { return std::move(div_mod(std::move(f), std::move(g)).second); }
friend FPSNaive operator*(const value_type x, FPSNaive f) { f *= x; return f; }
friend FPSNaive operator<<(FPSNaive f, const int shamt) { f <<= shamt; return f; }
friend FPSNaive operator>>(FPSNaive f, const int shamt) { f >>= shamt; return f; }
friend std::pair<FPSNaive, FPSNaive> div_mod(FPSNaive f, FPSNaive g) {
const int fd = f.normalize(), gd = g.normalize();
assert(gd >= 0);
if (fd < gd) return { FPSNaive{}, f };
if (gd == 0) return { f *= g.unsafe_get(0).inv(), FPSNaive{} };
const int k = f.deg() - gd;
value_type head_inv = g.unsafe_get(gd).inv();
FPSNaive q(k + 1);
for (int i = k; i >= 0; --i) {
value_type div = f.unsafe_get(i + gd) * head_inv;
q.unsafe_get(i) = div;
for (int j = 0; j <= gd; ++j) f.unsafe_get(i + j) -= div * g.unsafe_get(j);
}
return { q, f.cut_inplace(gd - 1) };
}
friend bool operator==(const FPSNaive& f, const FPSNaive& g) {
const int n = f.size(), m = g.size();
if (n < m) return g == f;
for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false;
for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false;
return true;
}
friend bool operator!=(const FPSNaive& f, const FPSNaive& g) {
return not (f == g);
}
FPSNaive mul(const FPSNaive& g, int max_deg) const {
if (this->empty() or g.empty()) return FPSNaive{};
const int n = size(), m = g.size();
FPSNaive h(std::min(max_deg + 1, n + m - 1));
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) {
if (i + j > max_deg) break;
h.unsafe_get(i + j) += unsafe_get(i) * g.unsafe_get(j);
}
return h;
}
FPSNaive diff() const {
if (this->empty()) return {};
FPSNaive g(size() - 1);
for (int i = 1; i <= deg(); ++i) g.unsafe_get(i - 1) = unsafe_get(i) * i;
return g;
}
FPSNaive intg() const {
const int n = size();
FPSNaive g(n + 1);
for (int i = 0; i < n; ++i) g.unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1];
if (g.deg() > MAX_DEG) g.cut_inplace(MAX_DEG);
return g;
}
FPSNaive inv(int max_deg) const {
FPSNaive g(max_deg + 1);
const value_type inv_f0 = ::inv(unsafe_get(0));
g.unsafe_get(0) = inv_f0;
for (int i = 1; i <= max_deg; ++i) {
for (int j = 1; j <= i; ++j) g.unsafe_get(i) -= g.unsafe_get(i - j) * (*this)[j];
g.unsafe_get(i) *= inv_f0;
}
return g;
}
FPSNaive exp(int max_deg) const {
assert(unsafe_get(0) == value_type{ 0 });
FPSNaive g(max_deg + 1);
g.unsafe_get(0) = value_type{ 1 };
for (int i = 1; i <= max_deg; ++i) {
for (int j = 1; j <= i; ++j) g.unsafe_get(i) += j * g.unsafe_get(i - j) * (*this)[j];
g.unsafe_get(i) *= invs[i];
}
return g;
}
FPSNaive log(int max_deg) const {
assert(unsafe_get(0) == value_type{ 1 });
FPSNaive g(max_deg + 1);
g.unsafe_get(0) = value_type{ 0 };
for (int i = 1; i <= max_deg; ++i) {
g.unsafe_get(i) = i * (*this)[i];
for (int j = 1; j < i; ++j) g.unsafe_get(i) -= (i - j) * g.unsafe_get(i - j) * (*this)[j];
g.unsafe_get(i) *= invs[i];
}
return g;
}
FPSNaive pow(const long long k, int max_deg) const {
if (k == 0) return { value_type{ 1 } };
int z = 0;
while (z < size() and unsafe_get(z) == value_type{ 0 }) ++z;
if (z >= max_deg / k + 1) return FPSNaive{};
const int d = max_deg - z * k;
FPSNaive g(d + 1);
const value_type inv_f0 = ::inv(unsafe_get(z));
g.unsafe_get(0) = unsafe_get(z).pow(k);
for (int i = 1; i <= d; ++i) {
for (int j = 1; j <= i; ++j) g.unsafe_get(i) += (element_type{ k } * j - (i - j)) * g.unsafe_get(i - j) * (*this)[z + j];
g.unsafe_get(i) *= inv_f0 * invs[i];
}
g <<= z * k;
return g;
}
FPSNaive sqrt(int max_deg) const {
int dl = 0;
while (dl < size() and unsafe_get(dl) == value_type{ 0 }) ++dl;
if (dl == size()) return FPSNaive{};
if (dl & 1) assert(false);
const int d = max_deg - dl / 2;
FPSNaive g(d + 1);
g.unsafe_get(0) = ::sqrt((*this)[dl]);
value_type inv_2g0 = ::inv(2 * g.unsafe_get(0));
for (int i = 1; i <= d; ++i) {
g.unsafe_get(i) = unsafe_get(dl + i);
for (int j = 1; j < i; ++j) g.unsafe_get(i) -= g.unsafe_get(j) * g.unsafe_get(i - j);
g.unsafe_get(i) *= inv_2g0;
}
g <<= dl / 2;
return g;
}
value_type eval(value_type x) const {
value_type y = 0;
for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i);
return y;
}
private:
static inline inv_mods<element_type> invs;
void ensure_deg(int d) {
if (deg() < d) this->resize(d + 1, value_type{ 0 });
}
const value_type& unsafe_get(int i) const {
return std::vector<value_type>::operator[](i);
}
value_type& unsafe_get(int i) {
return std::vector<value_type>::operator[](i);
}
};
} // namespace suisen
template <typename mint>
auto sqrt(suisen::FPSNaive<mint> a) -> decltype(mint::mod(), suisen::FPSNaive<mint>{}) {
return a.sqrt(suisen::FPSNaive<mint>::MAX_DEG == std::numeric_limits<int>::max() / 2 ? suisen::FPSNaive<mint>::MAX_DEG : a.deg());
}
template <typename mint>
auto log(suisen::FPSNaive<mint> a) -> decltype(mint::mod(), suisen::FPSNaive<mint>{}) {
return a.log(suisen::FPSNaive<mint>::MAX_DEG == std::numeric_limits<int>::max() / 2 ? suisen::FPSNaive<mint>::MAX_DEG : a.deg());
}
template <typename mint>
auto exp(suisen::FPSNaive<mint> a) -> decltype(mint::mod(), suisen::FPSNaive<mint>{}) {
return a.exp(suisen::FPSNaive<mint>::MAX_DEG == std::numeric_limits<int>::max() / 2 ? suisen::FPSNaive<mint>::MAX_DEG : a.deg());
}
template <typename mint, typename T>
auto pow(suisen::FPSNaive<mint> a, T b) -> decltype(mint::mod(), suisen::FPSNaive<mint>{}) {
return a.pow(b, suisen::FPSNaive<mint>::MAX_DEG == std::numeric_limits<int>::max() / 2 ? suisen::FPSNaive<mint>::MAX_DEG : a.deg());
}
template <typename mint>
auto inv(suisen::FPSNaive<mint> a) -> decltype(mint::mod(), suisen::FPSNaive<mint>{}) {
return a.inv(suisen::FPSNaive<mint>::MAX_DEG == std::numeric_limits<int>::max() / 2 ? suisen::FPSNaive<mint>::MAX_DEG : a.deg());
}
namespace suisen {
template <typename mint>
using convolution_t = std::vector<mint>(*)(const std::vector<mint>&, const std::vector<mint>&);
template <typename mint>
struct FPS : public std::vector<mint> {
using std::vector<mint>::vector;
FPS(const std::initializer_list<mint> l) : std::vector<mint>::vector(l) {}
FPS(const std::vector<mint>& v) : std::vector<mint>::vector(v) {}
FPS(std::vector<mint>&& v) : std::vector<mint>::vector(std::move(v)) {}
static void set_multiplication(convolution_t<mint> multiplication) {
FPS<mint>::mult = multiplication;
}
const mint operator[](int n) const noexcept { return n <= deg() ? unsafe_get(n) : 0; }
mint& operator[](int n) noexcept { ensure_deg(n); return unsafe_get(n); }
int size() const noexcept { return std::vector<mint>::size(); }
int deg() const noexcept { return size() - 1; }
int normalize() {
while (this->size() and this->back() == 0) this->pop_back();
return deg();
}
FPS& pre_inplace(int max_deg) noexcept {
if (deg() > max_deg) this->resize(std::max(0, max_deg + 1));
return *this;
}
FPS pre(int max_deg) const noexcept { return FPS(*this).pre_inplace(max_deg); }
FPS operator+() const { return FPS(*this); }
FPS operator-() const {
FPS f(*this);
for (auto& e : f) e = mint::mod() - e;
return f;
}
FPS& operator++() { ++(*this)[0]; return *this; }
FPS& operator--() { --(*this)[0]; return *this; }
FPS& operator+=(const mint x) { (*this)[0] += x; return *this; }
FPS& operator-=(const mint x) { (*this)[0] -= x; return *this; }
FPS& operator+=(const FPS& g) {
ensure_deg(g.deg());
for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i);
return *this;
}
FPS& operator-=(const FPS& g) {
ensure_deg(g.deg());
for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i);
return *this;
}
FPS& operator*=(const FPS& g) { return *this = FPS<mint>::mult(*this, g); }
FPS& operator*=(const mint x) {
for (auto& e : *this) e *= x;
return *this;
}
FPS& operator/=(FPS g) {
const int fd = normalize(), gd = g.normalize();
assert(gd >= 0);
if (fd < gd) { this->clear(); return *this; }
if (gd == 0) return *this *= g.unsafe_get(0).inv();
static constexpr int THRESHOLD_NAIVE_POLY_QUOTIENT = 256;
if (gd <= THRESHOLD_NAIVE_POLY_QUOTIENT) {
*this = std::move(naive_div_inplace(std::move(g), gd).first);
return *this;
}
std::reverse(this->begin(), this->end()), std::reverse(g.begin(), g.end());
const int k = fd - gd;
*this *= g.inv_inplace(k), this->resize(k + 1);
std::reverse(this->begin(), this->end());
return *this;
}
FPS& operator%=(FPS g) {
int fd = normalize(), gd = g.normalize();
assert(gd >= 0);
if (fd < gd) return *this;
if (gd == 0) { this->clear(); return *this; }
static constexpr int THRESHOLD_NAIVE_REMAINDER = 256;
if (gd <= THRESHOLD_NAIVE_REMAINDER) return naive_div_inplace(std::move(g), gd).second;
*this -= g * (*this / g);
return pre_inplace(gd - 1);
}
FPS& operator<<=(const int shamt) {
this->insert(this->begin(), shamt, 0);
return *this;
}
FPS& operator>>=(const int shamt) {
if (shamt > size()) this->clear();
else this->erase(this->begin(), this->begin() + shamt);
return *this;
}
friend FPS operator+(FPS f, const FPS& g) { f += g; return f; }
friend FPS operator+(FPS f, const mint x) { f += x; return f; }
friend FPS operator-(FPS f, const FPS& g) { f -= g; return f; }
friend FPS operator-(FPS f, const mint x) { f -= x; return f; }
friend FPS operator*(FPS f, const FPS& g) { f *= g; return f; }
friend FPS operator*(FPS f, const mint x) { f *= x; return f; }
friend FPS operator/(FPS f, const FPS& g) { f /= g; return f; }
friend FPS operator%(FPS f, const FPS& g) { f %= g; return f; }
friend FPS operator*(const mint x, FPS f) { f *= x; return f; }
friend FPS operator<<(FPS f, const int shamt) { f <<= shamt; return f; }
friend FPS operator>>(FPS f, const int shamt) { f >>= shamt; return f; }
friend bool operator==(const FPS& f, const FPS& g) {
int n = f.size(), m = g.size();
if (n < m) return g == f;
for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false;
for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false;
return true;
}
FPS& diff_inplace() {
if (this->size() == 0) return *this;
for (int i = 1; i <= deg(); ++i) unsafe_get(i - 1) = unsafe_get(i) * i;
this->pop_back();
return *this;
}
FPS& intg_inplace() {
int d = deg();
ensure_deg(d + 1);
for (int i = d; i >= 0; --i) unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1];
unsafe_get(0) = 0;
return *this;
}
FPS& inv_inplace(const int max_deg) {
if (max_deg <= 60) return *this = FPSNaive<mint>(this->begin(), this->end()).inv(max_deg);
FPS res{ unsafe_get(0).inv() };
for (int k = 1; k <= max_deg; k *= 2) {
FPS tmp(this->pre(k * 2) * (res * res));
res *= 2, res -= tmp.pre_inplace(2 * k);
}
return *this = std::move(res), pre_inplace(max_deg);
}
FPS& log_inplace(const int max_deg) {
if (max_deg <= 60) return *this = FPSNaive<mint>(this->begin(), this->end()).log(max_deg);
FPS f_inv = inv(max_deg);
diff_inplace(), *this *= f_inv, pre_inplace(max_deg - 1), intg_inplace();
return *this;
}
FPS& exp_inplace(const int max_deg) {
if (max_deg <= 60) return *this = FPSNaive<mint>(this->begin(), this->end()).exp(max_deg);
FPS res{ 1 };
for (int k = 1; k <= max_deg; k *= 2) res *= ++(pre(k * 2) - res.log(k * 2)), res.pre_inplace(k * 2);
return *this = std::move(res), pre_inplace(max_deg);
}
FPS& pow_inplace(const long long k, const int max_deg) {
if (max_deg <= 60) return *this = FPSNaive<mint>(this->begin(), this->end()).pow(k, max_deg);
int tlz = 0;
while (tlz <= deg() and unsafe_get(tlz) == 0) ++tlz;
if (tlz * k > max_deg) { this->clear(); return *this; }
*this >>= tlz;
mint base = (*this)[0];
*this *= base.inv(), log_inplace(max_deg), *this *= k, exp_inplace(max_deg), *this *= base.pow(k);
return *this <<= tlz * k, pre_inplace(max_deg);
}
FPS diff() const { FPS f{ *this }; f.diff_inplace(); return f; }
FPS intg() const { FPS f{ *this }; f.intg_inplace(); return f; }
FPS inv(const int max_deg) const { FPS f{ *this }; f.inv_inplace(max_deg); return f; }
FPS log(const int max_deg) const { FPS f{ *this }; f.log_inplace(max_deg); return f; }
FPS exp(const int max_deg) const { FPS f{ *this }; f.exp_inplace(max_deg); return f; }
FPS pow(const long long k, const int max_deg) const { FPS f{ *this }; f.pow_inplace(k, max_deg); return f; }
mint eval(mint x) const {
mint y = 0;
for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i);
return y;
}
private:
static inline inv_mods<mint> invs;
static convolution_t<mint> mult;
void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, 0); }
const mint& unsafe_get(int i) const { return std::vector<mint>::operator[](i); }
mint& unsafe_get(int i) { return std::vector<mint>::operator[](i); }
std::pair<FPS, FPS&> naive_div_inplace(FPS&& g, const int gd) {
const int k = deg() - gd;
mint head_inv = g.unsafe_get(gd).inv();
FPS q(k + 1);
for (int i = k; i >= 0; --i) {
mint div = this->unsafe_get(i + gd) * head_inv;
q.unsafe_get(i) = div;
for (int j = 0; j <= gd; ++j) this->unsafe_get(i + j) -= div * g.unsafe_get(j);
}
return { q, pre_inplace(gd - 1) };
}
};
template <typename mint>
convolution_t<mint> FPS<mint>::mult = [](const auto&, const auto&) {
std::cerr << "convolution function is not available." << std::endl;
assert(false);
return std::vector<mint>{};
};
} // namespace suisen
template <typename mint>
auto sqrt(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) {
assert(false);
}
template <typename mint>
auto log(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) {
return a.log(a.deg());
}
template <typename mint>
auto exp(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) {
return a.exp(a.deg());
}
template <typename mint, typename T>
auto pow(suisen::FPS<mint> a, T b) -> decltype(mint::mod(), suisen::FPS<mint>{}) {
return a.pow(b, a.deg());
}
template <typename mint>
auto inv(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) {
return a.inv(a.deg());
}
mint pow(mint a, int k) {
mint res = a.pow(abs(k));
return k >= 0 ? res : res.inv();
}
int main() {
suisen::FPS<mint>::set_multiplication([](const auto &a, const auto &b) { return atcoder::convolution(a, b); });
input(int, n, k);
FPS<mint> f(n + 1);
rep(i, n) {
read(f[i + 1]);
}
FPS<mint> df = f.diff();
if (df == FPS<mint>{}) {
print(vector<mint>(n, 0));
return 0;
}
int z = 0;
while (df[z] == 0) ++z;
FPS<mint> g;
if (k >= 0) {
auto h = (f >> z) * (df >> z).inv(n);
h.resize(n + 1);
g = (FPS<mint>{1} - f).inv(n);
loop(k) {
g = g.diff() * h;
g.resize(n + 1);
}
} else {
auto h = (df >> z) * (f >> (z + 1)).inv(n);
h.resize(n + 1);
g = df * (FPS<mint>{1} - f).inv(n);
g.resize(n);
g.intg_inplace();
loop(-k - 1) {
g *= h;
g.resize(n + 1);
g >>= 1;
g.intg_inplace();
}
}
g.erase(g.begin());
print(g);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0