結果

問題 No.1989 Pairing Multiset
ユーザー Chanyuh
提出日時 2022-06-26 13:46:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 59 ms / 2,000 ms
コード長 4,399 bytes
コンパイル時間 1,363 ms
コンパイル使用メモリ 126,916 KB
最終ジャッジ日時 2025-01-30 00:52:32
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <ciso646>
#include <cmath>
#include <complex>
#include <cstdio>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace std;
typedef long long ll;
const ll mod = 998244353;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define rep(i, n) for (int i = 0; i < n; i++)
#define per(i, n) for (int i = n - 1; i >= 0; i--)
#define Rep(i, sta, n) for (int i = sta; i < n; i++)
#define Per(i, sta, n) for (int i = n - 1; i >= sta; i--)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[8] = {1, -1, 0, 0, 1, 1, -1, -1};
int dy[8] = {0, 0, 1, -1, 1, -1, 1, -1};
template <class T>
using max_heap = priority_queue<T>;
template <class T>
using min_heap = priority_queue<T, vector<T>, greater<>>;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <int mod>
struct ModInt {
long long x;
static constexpr int MOD = mod;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
explicit operator int() const { return x; }
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator%(const ModInt &p) const { return ModInt(0); }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt power(long long n) const {
ModInt ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt power(const ModInt p) const { return ((ModInt)x).power(p.x); }
friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using modint = ModInt<mod>;
struct ModFac {
public:
vector<modint> f, i_f;
int n;
ModFac(int n_) {
n = n_;
f.resize(n + 1, 1);
i_f.resize(n + 1, 1);
for (int i = 0; i < n; i++) {
f[i + 1] = f[i] * (modint)(i + 1);
}
i_f[n] = f[n].power(mod - 2);
for (int i = n - 1; i >= 0; i--) {
i_f[i] = i_f[i + 1] * (modint)(i + 1);
}
}
ModFac(modint n_) {
n = (int)n_;
f.resize(n + 1, 1);
i_f.resize(n + 1, 1);
for (int i = 0; i < n; i++) {
f[i + 1] = f[i] * (modint)(i + 1);
}
i_f[n] = f[n].power(mod - 2);
for (int i = n - 1; i >= 0; i--) {
i_f[i] = i_f[i + 1] * (modint)(i + 1);
}
}
modint factorial(int x) {
// cout << f.size() << endl;
return f[x];
}
modint inv_factorial(int x) { return i_f[x]; }
modint comb(int m, int k) {
if (m < 0 or k < 0) return 0;
if (m < k) return 0;
return f[m] * i_f[k] * i_f[m - k];
}
};
ModFac MF(3000010);
int N, M;
void solve() {
cin >> N >> M;
modint C = 1;
rep(i, 2 * N) { C *= (modint)(M + 2 * N - i); }
C *= MF.inv_factorial(2 * N);
modint ans = (modint)N * M / (modint)(2 * N + 1) * C;
cout << ans << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(50);
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0