結果

問題 No.2004 Incremental Coins
ユーザー sigma425
提出日時 2022-07-10 17:56:54
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 10,416 bytes
コンパイル時間 2,768 ms
コンパイル使用メモリ 216,940 KB
最終ジャッジ日時 2025-01-30 06:12:20
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 4 WA * 14 RE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
if(x<y){ x=y; return true; }
return false;
}
template<class T,class U> bool chmin(T& x, U y){
if(y<x){ x=y; return true; }
return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<class D> D divFloor(D a, D b){
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll _v):v(normS(_v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ModInt& operator++(int){ return *this=*this+1;}
ModInt& operator--(int){ return *this=*this-1;}
template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
ModInt pow(ll p) const {
if(p<0) return inv().pow(-p);
ModInt a = 1;
ModInt x = *this;
while(p){
if(p&1) a *= x;
x *= x;
p >>= 1;
}
return a;
}
ModInt inv() const { // should be prime
return pow(mod-2);
}
// ll extgcd(ll a,ll b,ll &x,ll &y) const{
// ll p[]={a,1,0},q[]={b,0,1};
// while(*q){
// ll t=*p/ *q;
// rep(i,3) swap(p[i]-=t*q[i],q[i]);
// }
// if(p[0]<0) rep(i,3) p[i]=-p[i];
// x=p[1],y=p[2];
// return p[0];
// }
// ModInt inv() const {
// ll x,y;
// extgcd(v,mod,x,y);
// return make(normS(x+mod));
// }
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
bool operator<(const ModInt& b) const { return v<b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<998244353>;
//using mint = ModInt<1000000007>;
V<mint> fact,ifact,invs;
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
void InitFact(int N){ //[0,N]
N++;
fact.resize(N);
ifact.resize(N);
invs.resize(N);
fact[0] = 1;
rep1(i,N-1) fact[i] = fact[i-1] * i;
ifact[N-1] = fact[N-1].inv();
for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
// inplace_fmt (without bit rearranging)
// fft:
// a[rev(i)] <- \sum_j \zeta^{ij} a[j]
// invfft:
// a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)]
// These two are inversions.
// !!! CHANGE IF MOD is unusual !!!
const int ORDER_2_MOD_MINUS_1 = 23; // ord_2 (mod-1)
const mint PRIMITIVE_ROOT = 3; // primitive root of (Z/pZ)*
void fft(V<mint>& a){
static constexpr uint mod = mint::mod;
static constexpr uint mod2 = mod + mod;
static const int H = ORDER_2_MOD_MINUS_1;
static const mint root = PRIMITIVE_ROOT;
static mint magic[H-1];
int n = si(a);
assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2
if(!magic[0]){ // precalc
rep(i,H-1){
mint w = -root.pow(((mod-1)>>(i+2))*3);
magic[i] = w;
}
}
int m = n;
if(m >>= 1){
rep(i,m){
uint v = a[i+m].v; // < M
a[i+m].v = a[i].v + mod - v; // < 2M
a[i].v += v; // < 2M
}
}
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i+m].v = a[i].v + mod - v; // < 3M
a[i].v += v; // < 3M
}
p *= magic[__builtin_ctz(++h)];
}
}
while(m){
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i+m].v = a[i].v + mod - v; // < 4M
a[i].v += v; // < 4M
}
p *= magic[__builtin_ctz(++h)];
}
}
if(m >>= 1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
uint v = (a[i+m] * p).v; // < M
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i+m].v = a[i].v + mod - v; // < 3M
a[i].v += v; // < 3M
}
p *= magic[__builtin_ctz(++h)];
}
}
}
rep(i,n){
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v; // < M
}
// finally < mod !!
}
void invfft(V<mint>& a){
static constexpr uint mod = mint::mod;
static constexpr uint mod2 = mod + mod;
static const int H = ORDER_2_MOD_MINUS_1;
static const mint root = PRIMITIVE_ROOT;
static mint magic[H-1];
int n = si(a);
assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2
if(!magic[0]){ // precalc
rep(i,H-1){
mint w = -root.pow(((mod-1)>>(i+2))*3);
magic[i] = w.inv();
}
}
int m = 1;
if(m < n>>1){
mint p = 1;
for(int h=0,s=0; s<n; s += m*2){
for(int i=s;i<s+m;i++){
ull x = a[i].v + mod - a[i+m].v; // < 2M
a[i].v += a[i+m].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
p *= magic[__builtin_ctz(++h)];
}
m <<= 1;
}
for(;m < n>>1; m <<= 1){
mint p = 1;
for(int h=0,s=0; s<n; s+= m*2){
for(int i=s;i<s+(m>>1);i++){
ull x = a[i].v + mod2 - a[i+m].v; // < 4M
a[i].v += a[i+m].v; // < 4M
a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
for(int i=s+(m>>1); i<s+m; i++){
ull x = a[i].v + mod - a[i+m].v; // < 2M
a[i].v += a[i+m].v; // < 2M
a[i+m].v = (p.v * x) % mod; // < M
}
p *= magic[__builtin_ctz(++h)];
}
}
if(m < n){
rep(i,m){
uint x = a[i].v + mod2 - a[i+m].v; // < 4M
a[i].v += a[i+m].v; // < 4M
a[i+m].v = x; // < 4M
}
}
const mint in = mint(n).inv();
rep(i,n) a[i] *= in; // < M
// finally < mod !!
}
// A,B = 500000 -> 70ms
// verify https://judge.yosupo.jp/submission/44937
V<mint> multiply(V<mint> a, V<mint> b) {
int A = si(a), B = si(b);
if (!A || !B) return {};
int n = A+B-1;
int s = 1; while(s<n) s*=2;
if(a == b){ // # of fft call : 3 -> 2
a.resize(s); fft(a);
rep(i,s) a[i] *= a[i];
}else{
a.resize(s); fft(a);
b.resize(s); fft(b);
rep(i,s) a[i] *= b[i];
}
invfft(a); a.resize(n);
return a;
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
InitFact(500010);
int N; ll K; cin >> N >> K; N++;
V<mint> A(N); rep(i,N) cin >> A[i];
VV<int> G(N);
rep1(i,N-1){
int p; cin >> p;
G[p].pb(i);
}
V<int> dep(N);
per(i,N) for(int j: G[i]) dep[i] = dep[j]+1;
V<mint> ans(N);
V<deque<mint>> s(N); // first
VV<mint> t(N); // last
auto dfs1 = [&](auto& self,int v) -> void{
if(G[v].empty()){
s[v].push_back(A[v]);
return;
}
for(int u: G[v]) self(self,u);
int heavy = G[v][0];
for(int u: G[v]) if(dep[u] > dep[heavy]) heavy = u;
swap(s[v],s[heavy]);
for(int u: G[v]) if(u != heavy){
rep(i,si(s[u])) s[v][i] += s[u][i];
}
s[v].push_front(A[v]);
// show(v);dump(s[v]);
};
dfs1(dfs1,0);
auto dfs = [&](auto& self,int v,deque<mint>& deq) -> void{
if(deq.empty()){
int n = si(s[v]);
V<mint> f(n); rep(i,n) f[i] = s[v][i];
V<mint> g(n);
{
mint C = 1;
rep(i,n){
g[i] = C;
C *= K-i;
C *= invs[i+1];
}
show(g);
reverse(all(g));
}
auto h = multiply(f,g);
t[v].resize(n);
rep(i,n) t[v][i] = h[n-1+i];
deq.resize(n);
rep(i,n) deq[i] = t[v][i];
}
show(si(deq));
show(v);
show(deq[0]);
show("--------");
ans[v] = deq[0];
deq.pop_front();
if(G[v].empty()) return;
int heavy = G[v][0];
for(int u: G[v]) if(dep[u] > dep[heavy]) heavy = u;
for(int u: G[v]) if(u != heavy){
deque<mint> _;
self(self,u,_);
rep(i,dep[u]+1) deq[i] -= t[u][i];
}
self(self,heavy,deq);
};
deque<mint> _;
dfs(dfs,0,_);
rep(v,N) cout << ans[v] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0