結果
問題 | No.2004 Incremental Coins |
ユーザー | sigma425 |
提出日時 | 2022-07-10 18:08:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 804 ms / 2,000 ms |
コード長 | 10,397 bytes |
コンパイル時間 | 3,239 ms |
コンパイル使用メモリ | 226,068 KB |
実行使用メモリ | 190,676 KB |
最終ジャッジ日時 | 2024-06-11 08:08:59 |
合計ジャッジ時間 | 14,635 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 12 ms
9,088 KB |
testcase_01 | AC | 12 ms
9,088 KB |
testcase_02 | AC | 12 ms
9,088 KB |
testcase_03 | AC | 11 ms
9,088 KB |
testcase_04 | AC | 13 ms
9,600 KB |
testcase_05 | AC | 12 ms
9,344 KB |
testcase_06 | AC | 18 ms
10,880 KB |
testcase_07 | AC | 16 ms
10,880 KB |
testcase_08 | AC | 628 ms
186,416 KB |
testcase_09 | AC | 804 ms
184,244 KB |
testcase_10 | AC | 510 ms
190,676 KB |
testcase_11 | AC | 613 ms
187,312 KB |
testcase_12 | AC | 679 ms
184,728 KB |
testcase_13 | AC | 608 ms
162,684 KB |
testcase_14 | AC | 683 ms
180,880 KB |
testcase_15 | AC | 526 ms
173,568 KB |
testcase_16 | AC | 613 ms
179,944 KB |
testcase_17 | AC | 542 ms
173,172 KB |
testcase_18 | AC | 656 ms
181,116 KB |
testcase_19 | AC | 732 ms
178,188 KB |
testcase_20 | AC | 727 ms
177,428 KB |
testcase_21 | AC | 708 ms
170,688 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using uint = unsigned int; using ull = unsigned long long; #define rep(i,n) for(int i=0;i<int(n);i++) #define rep1(i,n) for(int i=1;i<=int(n);i++) #define per(i,n) for(int i=int(n)-1;i>=0;i--) #define per1(i,n) for(int i=int(n);i>0;i--) #define all(c) c.begin(),c.end() #define si(x) int(x.size()) #define pb push_back #define eb emplace_back #define fs first #define sc second template<class T> using V = vector<T>; template<class T> using VV = vector<vector<T>>; template<class T,class U> bool chmax(T& x, U y){ if(x<y){ x=y; return true; } return false; } template<class T,class U> bool chmin(T& x, U y){ if(y<x){ x=y; return true; } return false; } template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());} template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();} template<class T> V<T> Vec(size_t a) { return V<T>(a); } template<class T, class... Ts> auto Vec(size_t a, Ts... ts) { return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...)); } template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){ return o<<"("<<p.fs<<","<<p.sc<<")"; } template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){ o<<"{"; for(const T& v:vc) o<<v<<","; o<<"}"; return o; } constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); } #ifdef LOCAL #define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl void dmpr(ostream& os){os<<endl;} template<class T,class... Args> void dmpr(ostream&os,const T&t,const Args&... args){ os<<t<<" ~ "; dmpr(os,args...); } #define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__) #define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \ for(auto v: x) cerr << v << ","; cerr << "}" << endl; #else #define show(x) void(0) #define dump(x) void(0) #define shows(...) void(0) #endif template<class D> D divFloor(D a, D b){ return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0); } template<class D> D divCeil(D a, D b) { return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0); } template<unsigned int mod_> struct ModInt{ using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr static uint mod = mod_; uint v; ModInt():v(0){} ModInt(ll _v):v(normS(_v%mod+mod)){} explicit operator bool() const {return v!=0;} static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1] static ModInt make(const uint &x){ModInt m; m.v=x; return m;} ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));} ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));} ModInt operator-() const { return make(normS(mod-v)); } ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);} ModInt operator/(const ModInt& b) const { return *this*b.inv();} ModInt& operator+=(const ModInt& b){ return *this=*this+b;} ModInt& operator-=(const ModInt& b){ return *this=*this-b;} ModInt& operator*=(const ModInt& b){ return *this=*this*b;} ModInt& operator/=(const ModInt& b){ return *this=*this/b;} ModInt& operator++(int){ return *this=*this+1;} ModInt& operator--(int){ return *this=*this-1;} template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);} template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);} template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);} template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);} ModInt pow(ll p) const { if(p<0) return inv().pow(-p); ModInt a = 1; ModInt x = *this; while(p){ if(p&1) a *= x; x *= x; p >>= 1; } return a; } ModInt inv() const { // should be prime return pow(mod-2); } // ll extgcd(ll a,ll b,ll &x,ll &y) const{ // ll p[]={a,1,0},q[]={b,0,1}; // while(*q){ // ll t=*p/ *q; // rep(i,3) swap(p[i]-=t*q[i],q[i]); // } // if(p[0]<0) rep(i,3) p[i]=-p[i]; // x=p[1],y=p[2]; // return p[0]; // } // ModInt inv() const { // ll x,y; // extgcd(v,mod,x,y); // return make(normS(x+mod)); // } bool operator==(const ModInt& b) const { return v==b.v;} bool operator!=(const ModInt& b) const { return v!=b.v;} bool operator<(const ModInt& b) const { return v<b.v;} friend istream& operator>>(istream &o,ModInt& x){ ll tmp; o>>tmp; x=ModInt(tmp); return o; } friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;} }; using mint = ModInt<998244353>; //using mint = ModInt<1000000007>; V<mint> fact,ifact,invs; mint Choose(int a,int b){ if(b<0 || a<b) return 0; return fact[a] * ifact[b] * ifact[a-b]; } void InitFact(int N){ //[0,N] N++; fact.resize(N); ifact.resize(N); invs.resize(N); fact[0] = 1; rep1(i,N-1) fact[i] = fact[i-1] * i; ifact[N-1] = fact[N-1].inv(); for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1); rep1(i,N-1) invs[i] = fact[i-1] * ifact[i]; } // inplace_fmt (without bit rearranging) // fft: // a[rev(i)] <- \sum_j \zeta^{ij} a[j] // invfft: // a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)] // These two are inversions. // !!! CHANGE IF MOD is unusual !!! const int ORDER_2_MOD_MINUS_1 = 23; // ord_2 (mod-1) const mint PRIMITIVE_ROOT = 3; // primitive root of (Z/pZ)* void fft(V<mint>& a){ static constexpr uint mod = mint::mod; static constexpr uint mod2 = mod + mod; static const int H = ORDER_2_MOD_MINUS_1; static const mint root = PRIMITIVE_ROOT; static mint magic[H-1]; int n = si(a); assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2 if(!magic[0]){ // precalc rep(i,H-1){ mint w = -root.pow(((mod-1)>>(i+2))*3); magic[i] = w; } } int m = n; if(m >>= 1){ rep(i,m){ uint v = a[i+m].v; // < M a[i+m].v = a[i].v + mod - v; // < 2M a[i].v += v; // < 2M } } if(m >>= 1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ uint v = (a[i+m] * p).v; // < M a[i+m].v = a[i].v + mod - v; // < 3M a[i].v += v; // < 3M } p *= magic[__builtin_ctz(++h)]; } } while(m){ if(m >>= 1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ uint v = (a[i+m] * p).v; // < M a[i+m].v = a[i].v + mod - v; // < 4M a[i].v += v; // < 4M } p *= magic[__builtin_ctz(++h)]; } } if(m >>= 1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ uint v = (a[i+m] * p).v; // < M a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M a[i+m].v = a[i].v + mod - v; // < 3M a[i].v += v; // < 3M } p *= magic[__builtin_ctz(++h)]; } } } rep(i,n){ a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v; // < M } // finally < mod !! } void invfft(V<mint>& a){ static constexpr uint mod = mint::mod; static constexpr uint mod2 = mod + mod; static const int H = ORDER_2_MOD_MINUS_1; static const mint root = PRIMITIVE_ROOT; static mint magic[H-1]; int n = si(a); assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2 if(!magic[0]){ // precalc rep(i,H-1){ mint w = -root.pow(((mod-1)>>(i+2))*3); magic[i] = w.inv(); } } int m = 1; if(m < n>>1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ ull x = a[i].v + mod - a[i+m].v; // < 2M a[i].v += a[i+m].v; // < 2M a[i+m].v = (p.v * x) % mod; // < M } p *= magic[__builtin_ctz(++h)]; } m <<= 1; } for(;m < n>>1; m <<= 1){ mint p = 1; for(int h=0,s=0; s<n; s+= m*2){ for(int i=s;i<s+(m>>1);i++){ ull x = a[i].v + mod2 - a[i+m].v; // < 4M a[i].v += a[i+m].v; // < 4M a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M a[i+m].v = (p.v * x) % mod; // < M } for(int i=s+(m>>1); i<s+m; i++){ ull x = a[i].v + mod - a[i+m].v; // < 2M a[i].v += a[i+m].v; // < 2M a[i+m].v = (p.v * x) % mod; // < M } p *= magic[__builtin_ctz(++h)]; } } if(m < n){ rep(i,m){ uint x = a[i].v + mod2 - a[i+m].v; // < 4M a[i].v += a[i+m].v; // < 4M a[i+m].v = x; // < 4M } } const mint in = mint(n).inv(); rep(i,n) a[i] *= in; // < M // finally < mod !! } // A,B = 500000 -> 70ms // verify https://judge.yosupo.jp/submission/44937 V<mint> multiply(V<mint> a, V<mint> b) { int A = si(a), B = si(b); if (!A || !B) return {}; int n = A+B-1; int s = 1; while(s<n) s*=2; if(a == b){ // # of fft call : 3 -> 2 a.resize(s); fft(a); rep(i,s) a[i] *= a[i]; }else{ a.resize(s); fft(a); b.resize(s); fft(b); rep(i,s) a[i] *= b[i]; } invfft(a); a.resize(n); return a; } int main(){ cin.tie(0); ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !! cout << fixed << setprecision(20); InitFact(500010); int N; ll K; cin >> N >> K; N++; V<mint> A(N); rep(i,N) cin >> A[i]; VV<int> G(N); rep1(i,N-1){ int p; cin >> p; G[p].pb(i); } V<int> dep(N); per(i,N) for(int j: G[i]) chmax(dep[i],dep[j]+1); V<mint> ans(N); V<deque<mint>> s(N); // first VV<mint> t(N); // last auto dfs1 = [&](auto& self,int v) -> void{ if(G[v].empty()){ s[v].push_back(A[v]); return; } for(int u: G[v]) self(self,u); int heavy = G[v][0]; for(int u: G[v]) if(dep[u] > dep[heavy]) heavy = u; swap(s[v],s[heavy]); for(int u: G[v]) if(u != heavy){ rep(i,si(s[u])) s[v][i] += s[u][i]; } s[v].push_front(A[v]); }; dfs1(dfs1,0); auto dfs = [&](auto& self,int v,deque<mint>& deq) -> void{ if(deq.empty()){ int n = si(s[v]); V<mint> f(n); rep(i,n) f[i] = s[v][i]; V<mint> g(n); { mint C = 1; rep(i,n){ g[i] = C; C *= K-i; C *= invs[i+1]; } show(g); reverse(all(g)); } auto h = multiply(f,g); t[v].resize(n); rep(i,n) t[v][i] = h[n-1+i]; deq.resize(n); rep(i,n) deq[i] = t[v][i]; } show(si(deq)); show(v); show(deq[0]); show("--------"); ans[v] = deq[0]; deq.pop_front(); if(G[v].empty()) return; int heavy = G[v][0]; for(int u: G[v]) if(dep[u] > dep[heavy]) heavy = u; for(int u: G[v]) if(u != heavy){ deque<mint> _; self(self,u,_); rep(i,dep[u]+1) deq[i] -= t[u][i]; } self(self,heavy,deq); }; deque<mint> _; dfs(dfs,0,_); rep(v,N) cout << ans[v] << endl; }