結果

問題 No.2004 Incremental Coins
ユーザー hitonanodehitonanode
提出日時 2022-07-10 21:05:33
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 22,604 bytes
コンパイル時間 3,839 ms
コンパイル使用メモリ 220,140 KB
実行使用メモリ 52,460 KB
最終ジャッジ日時 2024-06-11 11:46:58
合計ジャッジ時間 6,787 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 AC 2 ms
5,376 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 154 ms
52,460 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) 0
#define dbgif(cond, x) 0
#endif

template <int md> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
    using lint = long long;
    MDCONST static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    MDCONST ModInt() : val_(0) {}
    MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    MDCONST ModInt(lint v) { _setval(v % md + md); }
    MDCONST explicit operator bool() const { return val_ != 0; }
    MDCONST ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    MDCONST ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    MDCONST ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    MDCONST ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); }
    MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend MDCONST ModInt operator+(lint a, const ModInt &x) {
        return ModInt()._setval(a % md + x.val_);
    }
    friend MDCONST ModInt operator-(lint a, const ModInt &x) {
        return ModInt()._setval(a % md - x.val_ + md);
    }
    friend MDCONST ModInt operator*(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.val_ % md);
    }
    friend MDCONST ModInt operator/(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.inv().val() % md);
    }
    MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; }
    MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    MDCONST bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }
    MDCONST ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static std::vector<ModInt> facs, facinvs, invs;
    MDCONST static void _precalculation(int N) {
        int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }
    MDCONST ModInt inv() const {
        if (this->val_ < std::min(md >> 1, 1 << 21)) {
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    MDCONST ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    MDCONST ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    MDCONST ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }
    MDCONST ModInt nCr(const ModInt &r) const {
        return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();
    }
    MDCONST ModInt nPr(const ModInt &r) const {
        return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};
using mint = ModInt<998244353>;


// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner);

constexpr int nttprimes[3] = {998244353, 167772161, 469762049};

// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {
    int n = a.size();
    if (n == 1) return;
    static const int mod = MODINT::mod();
    static const MODINT root = MODINT::get_primitive_root();
    assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);

    static std::vector<MODINT> w{1}, iw{1};
    for (int m = w.size(); m < n / 2; m *= 2) {
        MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;
        w.resize(m * 2), iw.resize(m * 2);
        for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
    }

    if (!is_inverse) {
        for (int m = n; m >>= 1;) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m] * w[k];
                    a[i] = x + y, a[i + m] = x - y;
                }
            }
        }
    } else {
        for (int m = 1; m < n; m *= 2) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m];
                    a[i] = x + y, a[i + m] = (x - y) * iw[k];
                }
            }
        }
        int n_inv = MODINT(n).inv().val();
        for (auto &v : a) v *= n_inv;
    }
}
template <int MOD>
std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
    int sz = a.size();
    assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
    std::vector<ModInt<MOD>> ap(sz), bp(sz);
    for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
    ntt(ap, false);
    if (a == b)
        bp = ap;
    else
        ntt(bp, false);
    for (int i = 0; i < sz; i++) ap[i] *= bp[i];
    ntt(ap, true);
    return ap;
}
long long garner_ntt_(int r0, int r1, int r2, int mod) {
    using mint2 = ModInt<nttprimes[2]>;
    static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
    static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val();
    static const long long m01_inv_m2 = mint2(m01).inv().val();

    int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
    auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
    return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod;
}
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {
    if (a.empty() or b.empty()) return {};
    int sz = 1, n = a.size(), m = b.size();
    while (sz < n + m) sz <<= 1;
    if (sz <= 16) {
        std::vector<MODINT> ret(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
        }
        return ret;
    }
    int mod = MODINT::mod();
    if (skip_garner or
        std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {
        a.resize(sz), b.resize(sz);
        if (a == b) {
            ntt(a, false);
            b = a;
        } else {
            ntt(a, false), ntt(b, false);
        }
        for (int i = 0; i < sz; i++) a[i] *= b[i];
        ntt(a, true);
        a.resize(n + m - 1);
    } else {
        std::vector<int> ai(sz), bi(sz);
        for (int i = 0; i < n; i++) ai[i] = a[i].val();
        for (int i = 0; i < m; i++) bi[i] = b[i].val();
        auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
        auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
        auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
        a.resize(n + m - 1);
        for (int i = 0; i < n + m - 1; i++)
            a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod);
    }
    return a;
}

template <typename MODINT>
std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) {
    return nttconv<MODINT>(a, b, false);
}

// Preorder Euler Tour
// (行きがけ順,部分木の頂点クエリ等に有用)
struct PreorderEulerTour {
    int V; // # of vertices of tree
    int root;
    std::vector<std::vector<int>> edges;
    std::vector<int> subtree_begin, subtree_end;
    std::vector<int> vis_order;

    void _build_dfs(int now, int prv) {
        subtree_begin[now] = vis_order.size();
        vis_order.push_back(now);
        for (auto nxt : edges[now])
            if (nxt != prv) _build_dfs(nxt, now);
        subtree_end[now] = vis_order.size();
    }
    PreorderEulerTour() = default;
    PreorderEulerTour(const std::vector<std::vector<int>> &to, int root)
        : V(to.size()), root(root), edges(to) {
        assert(root >= 0 and root < V);
        subtree_begin.resize(V);
        subtree_end.resize(V);
        _build_dfs(root, -1);
    }
};


#include <atcoder/segtree>

using S = pair<int, int>;
S op(S l, S r) { return max(l, r); }
S e() { return {-1, -1}; }

struct ConvolutionOnTree {
    int N;
    int root;
    std::vector<int> par;
    std::vector<std::vector<int>> children;

    std::vector<int> depth;
    std::vector<int> farthest_leaf;

    void _rec_build_hld(int now) {
        farthest_leaf[now] = now;
        for (int nxt : children[now]) {
            depth[nxt] = depth[now] + 1;
            _rec_build_hld(nxt);
            if (depth[farthest_leaf[now]] < depth[farthest_leaf[nxt]]) {
                farthest_leaf[now] = farthest_leaf[nxt];
            }
        }
    }

    void _build_hld() {
        depth.assign(N, 0);
        farthest_leaf.assign(N, -1);
        _rec_build_hld(root);
    }

    ConvolutionOnTree(std::vector<int> par_) : N(par_.size()), par(par_), children(par.size()) {
        root = -1;
        for (int i = 0; i < N; ++i) {
            if (par[i] >= 0 and par[i] < N) {
                children[par[i]].push_back(i);
            } else {
                assert(root == -1);
                par[i] = -1;
                root = i;
            }
        }
        assert(root != -1);

        _build_hld();
        dbg(children);
    }

    std::vector<mint> _run_rec(const int r, int h, std::vector<mint> &ret, const std::vector<mint> &f, const std::vector<mint> &trans) {
        dbg(make_pair(r, h));
        const int leaf = farthest_leaf[r], d = depth[leaf] - depth[r] + 1;
        std::vector<mint> g;
        std::vector<int> ids;
        g.reserve(d), ids.reserve(d);

        for (int cur = leaf, prv = -1;; prv = cur, cur = par[cur]) {
            ids.push_back(cur);
            g.push_back(f[cur]);

            for (int nxt : children[cur]) {
                if (nxt == prv) continue;
                int nxtlen = depth[farthest_leaf[nxt]] - depth[cur];
                std::vector<mint> gchild = _run_rec(nxt, ids.at(int(ids.size()) - nxtlen - 1), ret, f, trans);
                for (int i = 0; i < int(gchild.size()); ++i) {
                    // g.at(int(g.size()) - int(gchild.size()) - 1 + i) += gchild[i];
                }
            }

            if (cur == r) break;
        }

        std::vector<mint> trans_sub(trans.begin(), trans.begin() + min(trans.size(), g.size()));
        g = nttconv(g, trans_sub);

        for (int cur = leaf, i = 0;; cur = par[cur], ++i, h = h >= 0 ? par[h] : h) {
            ret.at(cur) += g.at(i);
            if (h >= 0) ret.at(h) -= g.at(i);
            if (cur == r) break;
        }
        return g;
    }

    std::vector<mint> run(const std::vector<mint> &f, const std::vector<mint> &trans) {
        std::vector<mint> ret(N, mint());
        _run_rec(root, -1, ret, f, trans);
        return ret;
    }
};

int main() {
    int N;
    lint K;
    cin >> N >> K;
    vector<mint> A(N + 1);
    vector<int> par(N);
    cin >> A >> par;
    par.insert(par.begin(), -1);

    // vector<vector<int>> child(N + 1);
    // FOR(i, 1, N + 1) child[par[i]].push_back(i);

    // dbg(child);

    // vector<mint> ret(N + 1);
    vector<mint> trans(N + 1);
    {
        mint tmp = 1;
        REP(i, trans.size()) {
            trans[i] = tmp;
            tmp = tmp * (mint(K) - i) / (i + 1);
        }
    }

    ConvolutionOnTree tree(par);
    for (auto x : tree.run(A, trans)) cout << x << '\n';

    // PreorderEulerTour et(child, 0);

    // using PP = pair<int, mint>;

    // vector<int> depth(N + 1);
    // auto dfs_depth = [&](auto &&self, int now) -> void {
    //     for (auto nxt : child[now]) {
    //         chmax(depth[nxt], depth[now] + 1);
    //         self(self, nxt);
    //     }
    // };
    // dfs_depth(dfs_depth, 0);

    // vector<vector<pair<int, mint>>> acs(N + 1, vector<pair<int, mint>>(1, pair<int, mint>(-1, 0)));
    // for (auto i : et.vis_order) {
    //     mint sum = acs[depth[i]].back().second + A[i];
    //     acs[depth[i]].emplace_back(et.subtree_begin[i], sum);
    // }

    // vector<S> depth_segtree;
    // for (auto i : et.vis_order) depth_segtree.emplace_back(depth[i], i);
    // atcoder::segtree<S, op, e> tree(depth_segtree);


    // auto subtree_getter = [&](int i) -> vector<mint> {
    //     int farthest = tree.prod(et.subtree_begin[i], et.subtree_end[i]).second;
    //     vector<mint> ret;
    //     FOR(d, depth[i], depth[farthest] + 1) {
    //         auto l = arglb(acs[d], PP(et.subtree_begin[i], 0)) - 1;
    //         auto r = arglb(acs[d], PP(et.subtree_end[i], 0)) - 1;
    //         ret.push_back(acs[d][r].second - acs[d][l].second);
    //     }
    //     return ret;
    // };

    // auto find_farthest = [&](int i) -> int {
    //     int farthest = tree.prod(et.subtree_begin[i], et.subtree_end[i]).second;
    //     return farthest;
    // };

    // auto rec = [&](auto &&self, int root, int erase_pointer) -> void {
    //     const int c = find_farthest(root);
    //     vector<int> path;

    //     vector<mint> atmp = subtree_getter(root);
    //     reverse(ALL(atmp));

    //     for (int i = c; i != root; i = par[i]) {
    //         path.push_back(i);
    //     }
    //     path.push_back(root);

    //     vector<mint> tt(atmp.size());
    //     REP(i, tt.size()) tt[i] = trans[i];

    //     auto conv = nttconv(atmp, tt);

    //     int p = c, pinv = erase_pointer;
    //     int cur = 0;
    //     while (true) {
    //         ret[p] += conv[cur];
    //         if (pinv >= 0) ret[pinv] -= conv[cur];

    //         if (p == root) break;

    //         p = par[p];
    //         if (pinv >= 0) pinv = par[pinv];
    //         cur++;
    //     }

    //     reverse(ALL(path));

    //     int prv = -1;

    //     for (auto i = c; i >= 0; i = par[i]) {
    //         for (auto nxt : child[i]) {
    //             if (nxt == prv) continue;
    //             int f = find_farthest(nxt);
    //             int dd = depth[f] - depth[root];
    //             self(self, nxt, path[dd]);
    //         }

    //         if (i == root) break;
    //         prv = i;
    //     }

    // };
    // rec(rec, 0, -1);

    // for (auto x : ret) cout << x << '\n';
}
0