結果

問題 No.1078 I love Matrix Construction
ユーザー mkawa2
提出日時 2022-07-13 14:39:45
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 750 ms / 2,000 ms
コード長 4,515 bytes
コンパイル時間 845 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 147,072 KB
最終ジャッジ日時 2024-06-24 18:00:36
合計ジャッジ時間 13,134 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = (1 << 63)-1
# inf = (1 << 31)-1
# md = 10**9+7
md = 998244353
import typing
class CSR:
def __init__(
self, n: int, edges: typing.List[typing.Tuple[int, int]]) -> None:
self.start = [0]*(n+1)
self.elist = [0]*len(edges)
for e in edges:
self.start[e[0]+1] += 1
for i in range(1, n+1):
self.start[i] += self.start[i-1]
counter = self.start.copy()
for e in edges:
self.elist[counter[e[0]]] = e[1]
counter[e[0]] += 1
class SCCGraph:
def __init__(self, n: int) -> None:
self._n = n
self._edges: typing.List[typing.Tuple[int, int]] = []
def num_vertices(self) -> int:
return self._n
def add_edge(self, from_vertex: int, to_vertex: int) -> None:
self._edges.append((from_vertex, to_vertex))
def scc_ids(self) -> typing.Tuple[int, typing.List[int]]:
g = CSR(self._n, self._edges)
now_ord = 0
group_num = 0
visited = []
low = [0]*self._n
order = [-1]*self._n
ids = [0]*self._n
sys.setrecursionlimit(max(self._n+1000, sys.getrecursionlimit()))
def dfs(v: int) -> None:
nonlocal now_ord
nonlocal group_num
nonlocal visited
nonlocal low
nonlocal order
nonlocal ids
low[v] = now_ord
order[v] = now_ord
now_ord += 1
visited.append(v)
for i in range(g.start[v], g.start[v+1]):
to = g.elist[i]
if order[to] == -1:
dfs(to)
low[v] = min(low[v], low[to])
else:
low[v] = min(low[v], order[to])
if low[v] == order[v]:
while True:
u = visited[-1]
visited.pop()
order[u] = self._n
ids[u] = group_num
if u == v:
break
group_num += 1
for i in range(self._n):
if order[i] == -1:
dfs(i)
for i in range(self._n):
ids[i] = group_num-1-ids[i]
return group_num, ids
def scc(self) -> typing.List[typing.List[int]]:
ids = self.scc_ids()
group_num = ids[0]
counts = [0]*group_num
for x in ids[1]:
counts[x] += 1
groups: typing.List[typing.List[int]] = [[] for _ in range(group_num)]
for i in range(self._n):
groups[ids[1][i]].append(i)
return groups
# https://atcoder.github.io/ac-library/production/document_ja/twosat.html
class TwoSAT:
def __init__(self, n: int = 0) -> None:
self._n = n
self._answer = [False]*n
self._scc = SCCGraph(2*n)
#
def add_clause(self, i: int, f: bool, j: int, g: bool) -> None:
assert 0 <= i < self._n
assert 0 <= j < self._n
self._scc.add_edge(2*i+(0 if f else 1), 2*j+(1 if g else 0))
self._scc.add_edge(2*j+(0 if g else 1), 2*i+(1 if f else 0))
def satisfiable(self) -> bool:
scc_id = self._scc.scc_ids()[1]
for i in range(self._n):
if scc_id[2*i] == scc_id[2*i+1]:
return False
self._answer[i] = scc_id[2*i] < scc_id[2*i+1]
return True
def answer(self) -> typing.List[bool]:
return self._answer
n = II()
ss = LI1()
tt = LI1()
uu = LI()
ts = TwoSAT(n**2)
for s, t, u in zip(ss, tt, uu):
e, d = divmod(u, 2)
for k in range(n):
ts.add_clause(s*n+k, d ^ 1, k*n+t, e ^ 1)
if ts.satisfiable():
aa = [[0]*n for _ in range(n)]
cur = []
for a in ts.answer():
cur.append(a*1)
if len(cur) == n:
print(*cur)
cur = []
else:
print(-1)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0