結果
| 問題 |
No.2020 Sum of Common Prefix Length
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-07-22 21:51:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 269 ms / 2,000 ms |
| コード長 | 23,875 bytes |
| コンパイル時間 | 4,558 ms |
| コンパイル使用メモリ | 334,488 KB |
| 最終ジャッジ日時 | 2025-01-30 12:17:42 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 38 |
ソースコード
#include <bits/stdc++.h>
#ifdef _MSC_VER
# include <intrin.h>
#else
# include <x86intrin.h>
#endif
#include <limits>
#include <type_traits>
namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
if constexpr (cond_v) {
return std::forward<Then>(then);
} else {
return std::forward<OrElse>(or_else);
}
}
// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;
template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;
// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;
// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long int> { using type = __uint128_t; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void>
struct rec_value_type {
using type = T;
};
template <typename T>
struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T>
using rec_value_type_t = typename rec_value_type<T>::type;
} // namespace suisen
// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T, typename U>
using umap = std::unordered_map<T, U>;
// ! macros (capital: internal macro)
#define OVERLOAD2(_1,_2,name,...) name
#define OVERLOAD3(_1,_2,_3,name,...) name
#define OVERLOAD4(_1,_2,_3,_4,name,...) name
#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define REP3(i,l,r) REP4(i,l,r,1)
#define REP2(i,n) REP3(i,0,n)
#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define REPINF2(i,l) REPINF3(i,l,1)
#define REPINF1(i) REPINF2(i,0)
#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define RREP3(i,l,r) RREP4(i,l,r,1)
#define RREP2(i,n) RREP3(i,0,n)
#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)
#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)
#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)
#define CAT_I(a, b) a##b
#define CAT(a, b) CAT_I(a, b)
#define UNIQVAR(tag) CAT(tag, __LINE__)
#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)
#define all(iterable) std::begin(iterable), std::end(iterable)
#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)
#ifdef LOCAL
# define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__)
template <class T, class... Args>
void debug_internal(const char* s, T&& first, Args&&... args) {
constexpr const char* prefix = "[\033[32mDEBUG\033[m] ";
constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "(";
constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")";
std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first);
((std::cerr << ", " << std::forward<Args>(args)), ...);
std::cerr << close_brakets << "\n";
}
#else
# define debug(...) void(0)
#endif
// ! I/O utilities
// __int128_t
std::ostream& operator<<(std::ostream& dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char* d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// __uint128_t
std::ostream& operator<<(std::ostream& dest, __uint128_t value) {
std::ostream::sentry s(dest);
if (s) {
char buffer[128];
char* d = std::end(buffer);
do {
--d;
*d = "0123456789"[value % 10];
value /= 10;
} while (value != 0);
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) {
return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return out;
} else {
out << std::get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {
out << ' ';
}
return operator<<<N + 1>(out, a);
}
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head& head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
__int128_t parse_i128(std::string& s) {
__int128_t ret = 0;
for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
if (s[0] == '-') ret = -ret;
return ret;
}
__uint128_t parse_u128(std::string& s) {
__uint128_t ret = 0;
for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
return ret;
}
// __int128_t
std::istream& operator>>(std::istream& in, __int128_t& v) {
std::string s;
in >> s;
v = parse_i128(s);
return in;
}
// __uint128_t
std::istream& operator>>(std::istream& in, __uint128_t& v) {
std::string s;
in >> s;
v = parse_u128(s);
return in;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U>& a) {
return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return in;
} else {
return operator>><N + 1>(in >> std::get<N>(a), a);
}
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T>& a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N>& a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
template <typename ...Args>
void read(Args &...args) {
(std::cin >> ... >> args);
}
// ! integral utilities
// Returns pow(-1, n)
template <typename T>
constexpr inline int pow_m1(T n) {
return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <>
constexpr inline int pow_m1<bool>(bool n) {
return -int(n) | 1;
}
// Returns floor(x / y)
template <typename T>
constexpr inline T fld(const T x, const T y) {
return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T>
constexpr inline T cld(const T x, const T y) {
return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T>
constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> -1 - count_lz(x); }
template <typename T>
constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T>
constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T>
constexpr inline int parity(const T x) { return popcount(x) & 1; }
// ! container
template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>
auto priqueue_comp(const Comparator comparator) {
return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}
template <typename Iterable>
auto isize(const Iterable& iterable) -> decltype(int(iterable.size())) {
return iterable.size();
}
template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>
auto generate_vector(int n, Gen generator) {
std::vector<T> v(n);
for (int i = 0; i < n; ++i) v[i] = generator(i);
return v;
}
template <typename T>
auto generate_range_vector(T l, T r) {
return generate_vector(r - l, [l](int i) { return l + i; });
}
template <typename T>
auto generate_range_vector(T n) {
return generate_range_vector(0, n);
}
template <typename T>
void sort_unique_erase(std::vector<T>& a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) {
foreach_adjacent_values(c.begin(), c.end(), f);
}
// ! other utilities
// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T& x, const T& y) {
if (y >= x) return false;
x = y;
return true;
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T& x, const T& y) {
if (y <= x) return false;
x = y;
return true;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::string bin(T val, int bit_num = -1) {
std::string res;
if (bit_num >= 0) {
for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1);
} else {
for (; val; val >>= 1) res += '0' + (val & 1);
std::reverse(res.begin(), res.end());
}
return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_low_to_high(T val, T base = 10) {
std::vector<T> res;
for (; val; val /= base) res.push_back(val % base);
if (res.empty()) res.push_back(T{ 0 });
return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_high_to_low(T val, T base = 10) {
auto res = digits_low_to_high(val, base);
std::reverse(res.begin(), res.end());
return res;
}
template <typename T>
std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) {
std::ostringstream ss;
for (auto it = v.begin(); it != v.end();) {
ss << *it;
if (++it != v.end()) ss << sep;
}
ss << end;
return ss.str();
}
namespace suisen {}
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_{};
// ! code from here
#include <vector>
namespace suisen {
class HeavyLightDecomposition {
public:
template <typename Q>
using is_point_update_query = std::is_invocable<Q, int>;
template <typename Q>
using is_range_update_query = std::is_invocable<Q, int, int>;
template <typename Q, typename T>
using is_point_get_query = std::is_same<std::invoke_result_t<Q, int>, T>;
template <typename Q, typename T>
using is_range_fold_query = std::is_same<std::invoke_result_t<Q, int, int>, T>;
using Graph = std::vector<std::vector<int>>;
HeavyLightDecomposition() = default;
HeavyLightDecomposition(Graph &g) : n(g.size()), visit(n), leave(n), head(n), ord(n), siz(n), par(n, -1), dep(n, 0) {
for (int i = 0; i < n; ++i) if (par[i] < 0) dfs(g, i, -1);
int time = 0;
for (int i = 0; i < n; ++i) if (par[i] < 0) hld(g, i, -1, time);
}
int size() const {
return n;
}
int lca(int u, int v) const {
for (;; v = par[head[v]]) {
if (visit[u] > visit[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
}
}
int la(int u, int k, int default_value = -1) const {
if (k < 0) return default_value;
while (u >= 0) {
int h = head[u];
if (visit[u] - k >= visit[h]) return ord[visit[u] - k];
k -= visit[u] - visit[h] + 1;
u = par[h];
}
return default_value;
}
int move_to(int u, int v, int d, int default_value = -1) const {
if (d < 0) return default_value;
const int w = lca(u, v);
int uw = dep[u] - dep[w];
if (d <= uw) return la(u, d);
int vw = dep[v] - dep[w];
return d <= uw + vw ? la(v, (uw + vw) - d) : default_value;
}
int dist(int u, int v) const {
return dep[u] + dep[v] - 2 * dep[lca(u, v)];
}
template <typename T, typename Q, typename F, constraints_t<is_range_fold_query<Q, T>, is_bin_op<F, T>> = nullptr>
T fold_path(int u, int v, T identity, F bin_op, Q fold_query, bool is_edge_query = false) const {
T res = identity;
for (;; v = par[head[v]]) {
if (visit[u] > visit[v]) std::swap(u, v);
if (head[u] == head[v]) break;
res = bin_op(fold_query(visit[head[v]], visit[v] + 1), res);
}
return bin_op(fold_query(visit[u] + is_edge_query, visit[v] + 1), res);
}
template <
typename T, typename Q1, typename Q2, typename F,
constraints_t<is_range_fold_query<Q1, T>, is_range_fold_query<Q2, T>, is_bin_op<F, T>> = nullptr
>
T fold_path_noncommutative(int u, int v, T identity, F bin_op, Q1 fold_query, Q2 fold_query_rev, bool is_edge_query = false) const {
T res_u = identity, res_v = identity;
// a := lca(u, v)
// res = fold(u -> a) + fold(a -> v)
while (head[u] != head[v]) {
if (visit[u] < visit[v]) { // a -> v
res_v = bin_op(fold_query(visit[head[v]], visit[v] + 1), res_v);
v = par[head[v]];
} else { // u -> a
res_u = bin_op(res_u, fold_query_rev(visit[head[u]], visit[u] + 1));
u = par[head[u]];
}
}
if (visit[u] < visit[v]) { // a = u
res_v = bin_op(fold_query(visit[u] + is_edge_query, visit[v] + 1), res_v);
} else { // a = v
res_u = bin_op(res_u, fold_query_rev(visit[v] + is_edge_query, visit[u] + 1));
}
return bin_op(res_u, res_v);
}
template <typename Q, constraints_t<is_range_update_query<Q>> = nullptr>
void update_path(int u, int v, Q update_query, bool is_edge_query = false) const {
for (;; v = par[head[v]]) {
if (visit[u] > visit[v]) std::swap(u, v);
if (head[u] == head[v]) break;
update_query(visit[head[v]], visit[v] + 1);
}
update_query(visit[u] + is_edge_query, visit[v] + 1);
}
template <typename T, typename Q, constraints_t<is_range_fold_query<Q, T>> = nullptr>
T fold_subtree(int u, Q fold_query, bool is_edge_query = false) const {
return fold_query(visit[u] + is_edge_query, leave[u]);
}
template <typename Q, constraints_t<is_range_update_query<Q>> = nullptr>
void update_subtree(int u, Q update_query, bool is_edge_query = false) const {
update_query(visit[u] + is_edge_query, leave[u]);
}
template <typename T, typename Q, constraints_t<is_point_get_query<Q, T>> = nullptr>
T get_point(int u, Q get_query) const {
return get_query(visit[u]);
}
template <typename Q, constraints_t<is_point_update_query<Q>> = nullptr>
void update_point(int u, Q update_query) const {
update_query(visit[u]);
}
std::vector<int> inv_ids() const {
std::vector<int> inv(n);
for (int i = 0; i < n; ++i) inv[visit[i]] = i;
return inv;
}
int get_visit_time(int u) const {
return visit[u];
}
int get_leave_time(int u) const {
return leave[u];
}
int get_head(int u) const {
return head[u];
}
int get_kth_visited(int k) const {
return ord[k];
}
int get_subtree_size(int u) const {
return siz[u];
}
int get_parent(int u) const {
return par[u];
}
int get_depth(int u) const {
return dep[u];
}
std::vector<int> get_roots() const {
std::vector<int> res;
for (int i = 0; i < n; ++i) if (par[i] < 0) res.push_back(i);
return res;
}
private:
int n;
std::vector<int> visit, leave, head, ord, siz, par, dep;
int dfs(Graph &g, int u, int p) {
par[u] = p;
siz[u] = 1;
int max_size = 0;
for (int &v : g[u]) {
if (v == p) continue;
dep[v] = dep[u] + 1;
siz[u] += dfs(g, v, u);
if (max_size < siz[v]) {
max_size = siz[v];
std::swap(g[u].front(), v);
}
}
return siz[u];
}
void hld(Graph &g, int u, int p, int &time) {
visit[u] = time, ord[time] = u, ++time;
head[u] = p >= 0 and g[p].front() == u ? head[p] : u;
for (int v : g[u]) {
if (v != p) hld(g, v, u, time);
}
leave[u] = time;
}
};
} // namespace suisen
#include <atcoder/fenwicktree>
struct Trie {
int id;
map<char, Trie*> ch;
Trie(int id) : id(id) {}
~Trie() {
for (auto &[c, v] : ch) delete v;
ch.clear();
}
};
int main() {
input(int, n);
vector<string> s(n);
read(s);
input(int, q);
vector<tuple<int, int, char>> qs(q);
for (auto &[qt, x, c] : qs) {
read(qt, x);
--x;
if (qt == 1) read(c);
}
vector<string> t = s;
for (auto &[qt, x, c] : qs) if (qt == 1) {
t[x] += c;
}
Trie root(0);
vector<Trie*> tries { &root };
int k = 1;
for (const auto &x : t) {
Trie *cur = &root;
for (char c : x) {
if (auto it = cur->ch.find(c); it == cur->ch.end()) {
tries.push_back(cur = cur->ch[c] = new Trie(k++));
} else {
cur = it->second;
}
}
}
vector<vector<int>> g(k);
auto dfs = [&](auto dfs, Trie* cur) -> void {
for (auto [c, nxt] : cur->ch) {
g[cur->id].push_back(nxt->id);
dfs(dfs, nxt);
}
};
dfs(dfs, &root);
HeavyLightDecomposition hld(g);
vector<int> pos(n, 0);
atcoder::fenwick_tree<int> ft(k);
hld.update_point(0, [&](int id) { ft.add(id, n); });
rep(i, n) {
for (char c : s[i]) {
pos[i] = tries[pos[i]]->ch[c]->id;
hld.update_point(pos[i], [&](int id) { ft.add(id, 1); });
}
}
for (auto &[qt, x, c] : qs) {
if (qt == 1) {
pos[x] = tries[pos[x]]->ch[c]->id;
hld.update_point(pos[x], [&](int id) { ft.add(id, 1); });
} else {
int ans = hld.fold_path(0, pos[x], 0, std::plus<int>(), [&](int l, int r) { return ft.sum(l, r); });
print(ans - n);
}
}
return 0;
}