結果
| 問題 |
No.2020 Sum of Common Prefix Length
|
| コンテスト | |
| ユーザー |
haruki_K
|
| 提出日時 | 2022-08-11 08:06:46 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 228 ms / 2,000 ms |
| コード長 | 22,686 bytes |
| コンパイル時間 | 3,064 ms |
| コンパイル使用メモリ | 230,136 KB |
| 最終ジャッジ日時 | 2025-01-30 20:07:01 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 38 |
ソースコード
// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
using pii = pair<int, int>;
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i, n) for (int i = (int)(n); i >= 1; i--)
#define loop(i, a, B) for (int i = a; i B; i++)
#define loopR(i, a, B) for (int i = a; i B; i--)
#define all(x) begin(x), end(x)
#define allR(x) rbegin(x), rend(x)
#define pb push_back
#define eb emplace_back
#define fst first
#define snd second
template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf_<int32_t>;
auto constexpr INF64 = inf_<int64_t>;
auto constexpr INF = inf_<int>;
#ifdef LOCAL
#include "debug.hpp"
#define oj_local(x, y) (y)
#else
#define dump(...) (void)(0)
#define debug if (0)
#define oj_local(x, y) (x)
#endif
template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear(); } };
template <class T> using pque_max = pque<T, less<T>>;
template <class T> using pque_min = pque<T, greater<T>>;
template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0>
ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0>
ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; }
template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; }
template <class... T> ostream& operator<<(ostream& os, tuple<T...> const& t)
{ bool f = true; apply([&](auto&&... x) { ((os << (f ? f = false, "" : " ") << x), ...); }, t); return os; }
template <class... T> istream& operator>>(istream& is, tuple<T...>& t) { apply([&](auto&&... x) { ((is >> x), ...); }, t); return is; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } };
#define def(name, ...) auto name = MakeFixPoint() | [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
using type = vector<typename vec_impl<T, d-1>::type>;
template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << '\n'; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > (T)y) { x = (T)y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < (T)y) { x = (T)y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); }
template <class T, class = decltype(begin(declval<T&>()))> constexpr auto min(T const& a) { return *min_element(begin(a), end(a)); }
template <class T, class = decltype(begin(declval<T&>()))> constexpr auto max(T const& a) { return *max_element(begin(a), end(a)); }
template <class T> constexpr T min(set<T> const& st) { assert(st.size()); return *st.begin(); }
template <class T> constexpr T max(set<T> const& st) { assert(st.size()); return *prev(st.end()); }
template <class T> constexpr T min(multiset<T> const& st) { assert(st.size()); return *st.begin(); }
template <class T> constexpr T max(multiset<T> const& st) { assert(st.size()); return *prev(st.end()); }
constexpr ll max(signed x, ll y) { return max<ll>(x, y); }
constexpr ll max(ll x, signed y) { return max<ll>(x, y); }
constexpr ll min(signed x, ll y) { return min<ll>(x, y); }
constexpr ll min(ll x, signed y) { return min<ll>(x, y); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); }
template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); }
constexpr ll mod(ll x, ll m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; }
constexpr ll div_floor(ll x, ll y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); }
constexpr ll div_ceil(ll x, ll y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); }
constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 };
constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 };
auto four_nbd(int n, int m) {
static vector<pair<int, int>> v;
return [n, m](int i, int j) {
const int dx[] = { 1, 0, -1, 0 }, dy[] = { 0, 1, 0, -1 };
v.clear();
rep (dir, 4) {
int ni = i+dx[dir], nj = j+dy[dir];
if (0 <= ni and ni < n and 0 <= nj and nj < m) {
v.emplace_back(ni, nj);
}
}
return v;
};
};
template <class Comp> vector<int> iota(int n, Comp comp) {
vector<int> idx(n);
iota(begin(idx), end(idx), 0);
stable_sort(begin(idx), end(idx), comp);
return idx;
}
constexpr int popcnt(ll x) { return __builtin_popcountll(x); }
mt19937_64 seed_{random_device{}()};
template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); }
i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b]
u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } //
template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); }
template <class V> V &operator--(V &v) { for (auto &x : v) --x; return v; }
template <class V> V &operator++(V &v) { for (auto &x : v) ++x; return v; }
bool next_product(vector<int> &v, int m) {
repR (i, v.size()) if (++v[i] < m) return true; else v[i] = 0;
return false;
}
bool next_product(vector<int> &v, vector<int> const& s) {
repR (i, v.size()) if (++v[i] < s[i]) return true; else v[i] = 0;
return false;
}
template <class vec> int sort_unique(vec &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
return v.size();
}
template <class It> auto prefix_sum(It l, It r) {
vector<typename It::value_type> s = { 0 };
while (l != r) s.emplace_back(s.back() + *l++);
return s;
}
template <class It> auto suffix_sum(It l, It r) {
vector<typename It::value_type> s = { 0 };
while (l != r) s.emplace_back(*--r + s.back());
reverse(s.begin(), s.end());
return s;
}
template <class T> T pop(vector<T> &a) { auto x = a.back(); a.pop_back(); return x; }
template <class T> T pop_back(vector<T> &a) { auto x = a.back(); a.pop_back(); return x; }
template <class T, class V, class C> T pop(priority_queue<T, V, C> &a) { auto x = a.top(); a.pop(); return x; }
template <class T> T pop(queue<T> &a) { auto x = a.front(); a.pop(); return x; }
template <class T> T pop_front(deque<T> &a) { auto x = a.front(); a.pop_front(); return x; }
template <class T> T pop_back(deque<T> &a) { auto x = a.back(); a.pop_back(); return x; }
template <class T> T pop_front(set<T> &a) { auto x = *a.begin(); a.erase(a.begin()); return x; }
template <class T> T pop_back(set<T> &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; }
template <class T> T pop_front(multiset<T> &a) { auto it = a.begin(); auto x = *it; a.erase(it); return x; }
template <class T> T pop_back(multiset<T> &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; }
// <<<
// >>> HLD
#ifndef EDGE_INFO
#define EDGE_INFO
constexpr int dest(int v) { return v; }
template <class E, class = decltype(declval<E>().to)>
constexpr int dest(E const& e) { return e.to; }
constexpr int cost(...) { return 1; }
template <class E, class = decltype(declval<E>().cost)>
constexpr auto cost(E const& e) { return e.cost; }
template <class E> using cost_t = decltype(cost(declval<E>()));
#endif
template <class edge> struct HLD {
int n, m = 0, root;
vector<pair<int32_t, edge>> es;
vector<edge> csr;
vector<int32_t> csr_index, id, inv, head, sz, par, dep;
bool built = false;
HLD() : n(0), root(-1) {};
HLD(int n, int root = 0) : n(n), root(root), csr(2*(n-1)), csr_index(n+1), id(n), inv(n), head(n), sz(n), par(n), dep(n) {
assert(0 <= root); assert(root < n);
if (n == 1) build();
}
int size() const { return n; }
template <class It> struct edge_list {
It b, e;
It begin() const { return b; }
It end() const { return e; }
int size() const { return e-b; }
edge& operator[](int i) const { return *(b + i); }
};
auto operator[](int x) {
assert(built);
assert(0 <= x); assert(x < n);
auto b = csr.begin() + csr_index[x];
auto e = csr.begin() + csr_index[x+1] - (x != root);
return edge_list { b, e };
}
auto operator[](int x) const {
assert(built);
assert(0 <= x); assert(x < n);
auto b = csr.begin() + csr_index[x];
auto e = csr.begin() + csr_index[x+1] - (x != root);
return edge_list { b, e };
}
template <class... Args> void add_edge(int x, int y, Args&&... args) {
assert(not built);
es.emplace_back(x, edge { y, args... });
es.emplace_back(y, edge { x, args... });
if (++m == n-1) build();
}
void build() {
assert(m == n-1);
for (auto const& [x, e] : es) csr_index[x+1]++;
rep (x, n) csr_index[x+1] += csr_index[x];
auto pos = csr_index;
for (auto const& [x, e] : es) csr[pos[x]++] = e;
fill(sz.begin(), sz.end(), 0);
dep[root] = 0, par[root] = -1, head[root] = root;
int time = 0;
dfs1(root), dfs2(root, time);
rep (x, n) inv[id[x]] = x;
built = true;
}
int lca(int x, int y) const {
assert(built);
while (true) {
if (id[x] > id[y]) swap(x, y);
if (head[x] == head[y]) return x;
y = par[head[y]];
}
}
int dist(int x, int y) const {
assert(built);
return dep[x] + dep[y] - 2*dep[lca(x, y)];
}
int eid(int i) const {
assert(built);
auto const& [x, e] = es[i];
auto y = dest(e);
return x == par[y] ? id[y] : id[x];
}
int eid(int x, int y) const {
assert(built);
if (x == par[y]) return id[y];
if (y == par[x]) return id[x];
assert(false);
return -1;
}
int vid(int x) const { assert(built); return id[x]; }
int in(int x) const { assert(built); return id[x]; }
int out(int x) const { assert(built); return id[x] + sz[x]; }
pair<int, int> subtree(int x) const { return { in(x), out(x) }; }
pair<int, int> cut_size(int x, int y) const {
assert(built);
if (x == par[y]) return { n-sz[y], sz[y] };
if (y == par[x]) return { sz[x], n-sz[y] };
assert(false);
return { -1, -1 };
}
int meet(int x, int y, int z) const {
return lca(x, y) ^ lca(y, z) ^ lca(z, x);
}
bool is_ancestor(int x, int y) const { // excluding x == y
return in(x) < in(y) and out(y) <= out(x);
}
int step(int x, int y) const { // move one step from x toward y
assert(built);
assert(x != y);
if (not is_ancestor(x, y)) return par[x];
while (true) {
if (head[x] == head[y]) return dest(csr[csr_index[x]]);
y = head[y];
if (x == par[y]) return y;
y = par[y];
}
}
int climb(int x, int d) const {
assert(built);
assert(0 <= d); assert(d <= dep[x]);
auto const dep_y = dep[x] - d;
while (true) {
x = head[x];
if (dep[x] <= dep_y) return inv[id[x] + dep_y - dep[x]];
x = par[x];
}
}
// jump from x toward y by distance d
int jump(int x, int y, int d) const {
assert(built);
auto const z = lca(x, y);
auto const dist = dep[x] + dep[y] - 2*dep[z];
return d <= dep[x] - dep[z] ? climb(x, d) : climb(y, dist-d);
}
// path [x, y] = xpath + lca + ypath
// xpath : upward, ypath : downward
// sets xpath, ypath and returns id[lca]
int decompose(int x, int y, vector<pair<int, int>> &xpath, vector<pair<int, int>> &ypath) const {
assert(built);
xpath.clear();
ypath.clear();
while (true) {
if (head[x] == head[y]) {
if (id[x] > id[y]) xpath.emplace_back(id[y] + 1, id[x] + 1);
if (id[x] < id[y]) ypath.emplace_back(id[x] + 1, id[y] + 1);
reverse(ypath.begin(), ypath.end());
return min(id[x], id[y]);
} else if (id[x] > id[y]) {
xpath.emplace_back(id[head[x]], id[x] + 1);
x = par[head[x]];
} else {
ypath.emplace_back(id[head[y]], id[y] + 1);
y = par[head[y]];
}
}
}
template <bool with_lca>
vector<pair<int, int>> const& path(int x, int y) const {
assert(built);
static vector<pair<int, int>> ret;
ret.clear();
while (true) {
if (id[x] > id[y]) swap(x, y);
if (head[x] == head[y]) {
int l = id[x] + (with_lca ? 0 : 1), r = id[y] + 1;
if (l < r) ret.emplace_back(l, r);
return ret;
} else {
ret.emplace_back(id[head[y]], id[y] + 1);
y = par[head[y]];
}
}
}
auto const& vertices(int x, int y) const { return path<true>(x, y); }
auto const& edges(int x, int y) const { return path<false>(x, y); }
int dfs1(int x) {
const int l = csr_index[x], r = csr_index[x+1] - (x != root);
int ma_pos = l, ma = -1;
sz[x] = 1;
for (int i = l; i < r; ++i) {
auto &e = csr[i];
if (dest(e) == par[x]) swap(e, csr[r]);
par[dest(e)] = x;
dep[dest(e)] = dep[x] + 1;
int sub = dfs1(dest(e));
sz[x] += sub;
if (ma < sub) ma = sub, ma_pos = i;
}
swap(csr[l], csr[ma_pos]);
return sz[x];
}
void dfs2(int x, int &time) {
id[x] = time++;
const int l = csr_index[x], r = csr_index[x+1] - (x != root);
for (int i = l; i < r; ++i) {
const int y = dest(csr[i]);
head[y] = (i == l ? head[x] : y);
dfs2(y, time);
}
}
};
// <<<
// >>> segment tree
template <class Handler> struct Segtree : Handler {
using Value = typename Handler::Value;
using Handler::unit_value; // () -> Value
using Handler::merge; // (Value, Value) -> Value
vector<Value> v;
int n;
Segtree() {}
template <class... T> Segtree(T&&... x) { init(forward<T>(x)...); }
template <class F, class = decltype(declval<F>()(0))>
void init(int n, F gen) {
assert(n >= 0);
this->n = n;
v.resize(2*n, unit_value());
for (int i = 0; i < n; i++) v[n+i] = gen(i);
for (int i = n-1; i >= 1; i--) v[i] = merge(v[i<<1], v[i<<1|1]);
}
void init(int n) { init(n, [&](int) { return unit_value(); }); }
void init(int n, Value const& x) { init(n, [&](int) { return x; }); }
void init(vector<Value> const& v) { init(v.size(), [&](int i) { return v[i]; }); }
int size() const { return n; }
void set(int i, Value const& x) {
assert(0 <= i); assert(i < size());
i += n; v[i] = x;
while (i >>= 1) v[i] = merge(v[i<<1], v[i<<1|1]);
}
Value operator[](int i) const { return get(i); }
Value get(int i) const {
assert(0 <= i); assert(i < size());
return v[n + i];
}
// [l, r)
Value get(int l, int r) const {
assert(0 <= l); assert(l <= r); assert(r <= size());
Value x = unit_value(), y = unit_value();
for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
if (l&1) x = merge(x, v[l++]);
if (r&1) y = merge(v[--r], y);
}
return merge(x, y);
}
Value get_all() const { return get(0, size()); }
template <class F> int max_right(int l, F f) {
assert(0 <= l); assert(l <= size());
assert(f(unit_value()));
l += n;
const int r = size() << 1;
Value x = unit_value();
while (true) {
if (l == r) return size();
int k = __builtin_ctz(l | 1 << __lg(r - l));
auto y = merge(x, v[l >> k]);
if (not f(y)) { l >>= k; break; }
x = y, l += 1 << k;
}
while (l < size()) {
auto y = merge(x, v[l <<= 1]);
if (f(y)) x = y, l++;
}
return l - size();
}
template <class F> int min_left(int r, F f) {
assert(0 <= r); assert(r <= size());
assert(f(unit_value()));
r += n;
const int l = size();
Value x = unit_value();
while (true) {
if (l == r) return 0;
int k = __builtin_ctz(r | 1 << __lg(r - l));
auto y = merge(v[(r >> k) - 1], x);
if (not f(y)) { r >>= k; --r; break; }
x = y, r -= 1 << k;
}
while (r < size()) {
r = r << 1 | 1;
auto y = merge(v[r], x);
if (f(y)) x = y, r--;
}
return r + 1 - size();
}
vector<Value> dat() const {
vector<Value> ret(size());
for (int i = 0; i < size(); i++) ret[i] = get(i);
return ret;
}
};
// <<<
template <class T> struct Sum {
using Value = T;
static constexpr bool commutative = true;
constexpr static Value unit_value() { return 0; }
constexpr static Value merge(Value const& x, Value const& y) {
return x + y;
}
};
// >>> HLDSegtree
template <class Edge, class Mono, bool vertex_query> struct HLDSegtree {
HLD<Edge> const *pg;
Segtree<Mono> seg, rseg;
using Value = typename Mono::Value;
static constexpr bool com = Mono::commutative;
HLDSegtree(HLD<Edge> const& g) : pg(&g), seg(g.size()) {
if constexpr (com) rseg.init(g.size());
}
HLDSegtree(HLD<Edge> const& g, vector<Value> const& init) : pg(&g) {
const int n = g.size();
vector<Value> init_id(n);
assert((int)init.size() == (vertex_query ? n : n-1));
rep (i, init.size()) init_id[id(i)] = init[i];
seg.init(init_id);
if constexpr (not com) {
reverse(init_id.begin(), init_id.end());
rseg.init(init_id);
}
}
int id(int i) const {
if constexpr (vertex_query) {
return pg->vid(i);
} else {
return pg->eid(i);
}
}
int size() const { return pg->size(); }
Value get(int i) const { return seg.get(id(i)); }
Value operator[](int i) const { return seg.get(id(i)); }
Value get_all() const { seg.get_all(); }
void set(int i, Value const& v) {
seg.set(id(i), v);
if constexpr (not com) rseg.set(rseg.size()-1-id(i), v);
}
Value get(int x, int y) const {
static vector<pair<int, int>> xpath, ypath;
int lca_id = pg->decompose(x, y, xpath, ypath);
Value val = Mono::unit_value();
for (auto [l, r] : xpath) {
if constexpr (com) {
val = Mono::merge(val, seg.get(l, r));
} else {
const int n = pg->size();
val = Mono::merge(val, rseg.get(n-r, n-l));
}
}
if constexpr (vertex_query) {
val = Mono::merge(val, seg[lca_id]);
}
for (auto [l, r] : ypath) {
val = Mono::merge(val, seg.get(l, r));
}
return val;
}
vector<Value> dat() const {
vector<Value> v = seg.dat(), ret(v.size());
rep (i, v.size()) ret[i] = v[id(i)];
return ret;
}
};
template <class Edge, class Mono> using HLDSegtreeV = HLDSegtree<Edge, Mono, true>;
template <class Edge, class Mono> using HLDSegtreeE = HLDSegtree<Edge, Mono, false>;
// <<<
int32_t main() {
int n; cin >> n;
vector<string> s(n); cin >> s;
int q; cin >> q;
vector<tuple<int, int, char>> qs;
rep (i, q) {
int t; cin >> t;
if (t == 1) {
int i; cin >> i; --i;
char c; cin >> c;
qs.eb(t, i, c);
} else {
int i; cin >> i; --i;
qs.eb(t, i, 0);
}
}
struct node {
array<int, 26> ch;
node() { fill(all(ch), -1); }
};
vector<node> ns = { node() };
vector<int> pos(n, 0);
auto add = [&](int i, char c) {
c -= 'a';
int x = pos[i];
if (ns[x].ch[c] < 0) {
ns[x].ch[c] = ns.size();
ns.eb();
}
pos[i] = ns[x].ch[c];
};
rep (i, n) {
for (char c : s[i]) {
add(i, c);
}
}
for (auto [t, i, c] : qs) {
if (t == 1) add(i, c);
}
HLD<int> g(ns.size());
rep (x, g.size()) {
for (int y : ns[x].ch) {
if (y >= 0) g.add_edge(x, y);
}
}
HLDSegtreeV<int, Sum<int>> seg(g);
fill(all(pos), 0);
auto add2 = [&](int i, char c) {
c -= 'a';
int x = pos[i];
x = ns[x].ch[c];
pos[i] = x;
seg.set(x, seg[x] + 1);
};
rep (i, n) {
for (char c : s[i]) {
add2(i, c);
}
}
for (auto [t, i, c] : qs) {
if (t == 1) {
add2(i, c);
} else {
cout << seg.get(0, pos[i]) << '\n';
}
}
}
haruki_K