結果
問題 | No.1611 Minimum Multiple with Double Divisors |
ユーザー | haruki_K |
提出日時 | 2022-08-12 07:47:08 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,458 ms / 2,000 ms |
コード長 | 13,055 bytes |
コンパイル時間 | 2,821 ms |
コンパイル使用メモリ | 217,712 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-22 12:12:52 |
合計ジャッジ時間 | 21,500 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,458 ms
6,816 KB |
testcase_01 | AC | 650 ms
6,940 KB |
testcase_02 | AC | 711 ms
6,940 KB |
testcase_03 | AC | 711 ms
6,940 KB |
testcase_04 | AC | 707 ms
6,944 KB |
testcase_05 | AC | 712 ms
6,940 KB |
testcase_06 | AC | 710 ms
6,944 KB |
testcase_07 | AC | 709 ms
6,940 KB |
testcase_08 | AC | 709 ms
6,940 KB |
testcase_09 | AC | 708 ms
6,940 KB |
testcase_10 | AC | 255 ms
6,944 KB |
testcase_11 | AC | 878 ms
6,944 KB |
testcase_12 | AC | 823 ms
6,944 KB |
testcase_13 | AC | 819 ms
6,948 KB |
testcase_14 | AC | 820 ms
6,940 KB |
testcase_15 | AC | 822 ms
6,944 KB |
testcase_16 | AC | 824 ms
6,940 KB |
testcase_17 | AC | 819 ms
6,940 KB |
testcase_18 | AC | 823 ms
6,940 KB |
testcase_19 | AC | 7 ms
6,940 KB |
testcase_20 | AC | 7 ms
6,940 KB |
testcase_21 | AC | 8 ms
6,940 KB |
testcase_22 | AC | 8 ms
6,944 KB |
testcase_23 | AC | 8 ms
6,940 KB |
testcase_24 | AC | 7 ms
6,944 KB |
testcase_25 | AC | 7 ms
6,940 KB |
testcase_26 | AC | 7 ms
6,944 KB |
testcase_27 | AC | 8 ms
6,940 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,944 KB |
ソースコード
// >>> TEMPLATES #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; #define int ll using pii = pair<int, int>; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep1(i, n) for (int i = 1; i <= (int)(n); i++) #define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rep1R(i, n) for (int i = (int)(n); i >= 1; i--) #define loop(i, a, B) for (int i = a; i B; i++) #define loopR(i, a, B) for (int i = a; i B; i--) #define all(x) begin(x), end(x) #define allR(x) rbegin(x), rend(x) #define pb push_back #define eb emplace_back #define fst first #define snd second template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1; auto constexpr INF32 = inf_<int32_t>; auto constexpr INF64 = inf_<int64_t>; auto constexpr INF = inf_<int>; #ifdef LOCAL #include "debug.hpp" #define oj_local(x, y) (y) #else #define dump(...) (void)(0) #define debug if (0) #define oj_local(x, y) (x) #endif template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear(); } }; template <class T> using pque_max = pque<T, less<T>>; template <class T> using pque_min = pque<T, greater<T>>; template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0> ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0> ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type> istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; } template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; } template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; } template <class... T> ostream& operator<<(ostream& os, tuple<T...> const& t) { bool f = true; apply([&](auto&&... x) { ((os << (f ? f = false, "" : " ") << x), ...); }, t); return os; } template <class... T> istream& operator>>(istream& is, tuple<T...>& t) { apply([&](auto&&... x) { ((is >> x), ...); }, t); return is; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template <class F> struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward<F>(f)) {} template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); } }; struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } }; #define def(name, ...) auto name = MakeFixPoint() | [&](auto &&name, __VA_ARGS__) template <class T, size_t d> struct vec_impl { using type = vector<typename vec_impl<T, d-1>::type>; template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); } }; template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } }; template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type; template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); } template <class T> void quit(T const& x) { cout << x << '\n'; exit(0); } template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > (T)y) { x = (T)y; return true; } return false; } template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < (T)y) { x = (T)y; return true; } return false; } template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); } template <class T, class = decltype(begin(declval<T&>()))> constexpr auto min(T const& a) { return *min_element(begin(a), end(a)); } template <class T, class = decltype(begin(declval<T&>()))> constexpr auto max(T const& a) { return *max_element(begin(a), end(a)); } template <class T> constexpr T min(set<T> const& st) { assert(st.size()); return *st.begin(); } template <class T> constexpr T max(set<T> const& st) { assert(st.size()); return *prev(st.end()); } template <class T> constexpr T min(multiset<T> const& st) { assert(st.size()); return *st.begin(); } template <class T> constexpr T max(multiset<T> const& st) { assert(st.size()); return *prev(st.end()); } constexpr ll max(signed x, ll y) { return max<ll>(x, y); } constexpr ll max(ll x, signed y) { return max<ll>(x, y); } constexpr ll min(signed x, ll y) { return min<ll>(x, y); } constexpr ll min(ll x, signed y) { return min<ll>(x, y); } template <class T> int sz(T const& x) { return x.size(); } template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); } template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); } constexpr ll mod(ll x, ll m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; } constexpr ll div_floor(ll x, ll y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); } constexpr ll div_ceil(ll x, ll y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); } constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 }; constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 }; auto four_nbd(int n, int m) { static vector<pair<int, int>> v; return [n, m](int i, int j) { const int dx[] = { 1, 0, -1, 0 }, dy[] = { 0, 1, 0, -1 }; v.clear(); rep (dir, 4) { int ni = i+dx[dir], nj = j+dy[dir]; if (0 <= ni and ni < n and 0 <= nj and nj < m) { v.emplace_back(ni, nj); } } return v; }; }; template <class Comp> vector<int> iota(int n, Comp comp) { vector<int> idx(n); iota(begin(idx), end(idx), 0); stable_sort(begin(idx), end(idx), comp); return idx; } constexpr int popcnt(ll x) { return __builtin_popcountll(x); } mt19937_64 seed_{random_device{}()}; template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); } i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b] u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } // template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); } template <class V> V &operator--(V &v) { for (auto &x : v) --x; return v; } template <class V> V &operator++(V &v) { for (auto &x : v) ++x; return v; } bool next_product(vector<int> &v, int m) { repR (i, v.size()) if (++v[i] < m) return true; else v[i] = 0; return false; } bool next_product(vector<int> &v, vector<int> const& s) { repR (i, v.size()) if (++v[i] < s[i]) return true; else v[i] = 0; return false; } template <class vec> int sort_unique(vec &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v.size(); } template <class It> auto prefix_sum(It l, It r) { vector<typename It::value_type> s = { 0 }; while (l != r) s.emplace_back(s.back() + *l++); return s; } template <class It> auto suffix_sum(It l, It r) { vector<typename It::value_type> s = { 0 }; while (l != r) s.emplace_back(*--r + s.back()); reverse(s.begin(), s.end()); return s; } template <class T> T pop(vector<T> &a) { auto x = a.back(); a.pop_back(); return x; } template <class T> T pop_back(vector<T> &a) { auto x = a.back(); a.pop_back(); return x; } template <class T, class V, class C> T pop(priority_queue<T, V, C> &a) { auto x = a.top(); a.pop(); return x; } template <class T> T pop(queue<T> &a) { auto x = a.front(); a.pop(); return x; } template <class T> T pop_front(deque<T> &a) { auto x = a.front(); a.pop_front(); return x; } template <class T> T pop_back(deque<T> &a) { auto x = a.back(); a.pop_back(); return x; } template <class T> T pop_front(set<T> &a) { auto x = *a.begin(); a.erase(a.begin()); return x; } template <class T> T pop_back(set<T> &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } template <class T> T pop_front(multiset<T> &a) { auto it = a.begin(); auto x = *it; a.erase(it); return x; } template <class T> T pop_back(multiset<T> &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } // <<< // >>> is_prime, factor namespace internal { using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; using u128 = __uint128_t; mt19937_64 mt{random_device{}()}; u64 rnd(u64 n) { return uniform_int_distribution<u64>(0, n-1)(mt); } // >>> montgomery (64bit) struct m64 { using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; inline static u64 m, r, n2; // r * m = -1 (mod 1<<64), n2 = 1<<128 (mod m) static void set_mod(u64 m) { assert(m < (1ull << 62)); assert((m & 1) == 1); m64::m = m; n2 = -u128(m) % m; r = m; rep (_, 5) r *= 2 - m*r; r = -r; assert(r * m == -1ull); } static u64 reduce(u128 b) { return (b + u128(u64(b) * r) * m) >> 64; } u64 x; m64() : x(0) {} m64(u64 x) : x(reduce(u128(x) * n2)){}; u64 val() const { u64 y = reduce(x); return y >= m ? y-m : y; } m64 &operator+=(m64 y) { x += y.x - (m << 1); x = (i64(x) < 0 ? x + (m << 1) : x); return *this; } m64 &operator-=(m64 y) { x -= y.x; x = (i64(x) < 0 ? x + (m << 1) : x); return *this; } m64 &operator*=(m64 y) { x = reduce(u128(x) * y.x); return *this; } m64 operator+(m64 y) const { return m64(*this) += y; } m64 operator-(m64 y) const { return m64(*this) -= y; } m64 operator*(m64 y) const { return m64(*this) *= y; } bool operator==(m64 y) const { return (x >= m ? x-m : x) == (y.x >= m ? y.x-m : y.x); } bool operator!=(m64 y) const { return not operator==(y); } m64 pow(u64 n) const { m64 y = 1, z = *this; for ( ; n; n >>= 1, z *= z) if (n & 1) y *= z; return y; } }; // <<< // >>> is_prime (Miller-Rabin) bool is_prime(const uint64_t x) { if (x == 2 or x == 3 or x == 5 or x == 7) return true; if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false; if (x < 121) return x > 1; const u64 d = (x-1) >> __builtin_ctzll(x-1); m64::set_mod(x); const m64 one(1), minus_one(x-1); auto ok = [&](u64 a) { auto y = m64(a).pow(d); u64 t = d; while (y != one and y != minus_one and t != x-1) y *= y, t <<= 1; if (y != minus_one and t % 2 == 0) return false; return true; }; if (x < (1ull << 32)) { for (u64 a : { 2, 7, 61 }) if (not ok(a)) return false; } else { for (u64 a : { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 }) { if (x <= a) return true; if (not ok(a)) return false; } } return true; } // <<< // >>> factor (Pollard rho) u64 rho(u64 n, u64 c) { m64::set_mod(n); assert(n > 1); const m64 cc(c); auto f = [&](m64 x) { return x*x + cc; }; m64 x = 1, y = 2, z = 1, q = 1; u64 g = 1; const u64 m = 1LL<<(__lg(n)/5); // ? for (u64 r = 1; g == 1; r <<= 1) { x = y; rep (_, r) y = f(y); for (u64 k = 0; k < r and g == 1; k += m) { z = y; rep (_, min(m, r-k)) y = f(y), q *= x-y; g = gcd(q.val(), n); } } if (g == n) do { z = f(z); g = gcd((x-z).val(), n); } while (g == 1); return g; } u64 find_prime_factor(u64 n) { assert(n > 1); if (is_prime(n)) return n; rep (_, 100) { u64 m = rho(n, rnd(n)); if (is_prime(m)) return m; n = m; } cerr << "failed" << endl; assert(false); return -1; } vector<pair<u64, u32>> factor(u64 n) { static vector<pair<u64, u32>> v; v.clear(); for (u64 i = 2; i <= 100 and i*i <= n; ++i) { if (n % i == 0) { u32 cnt = 0; do ++cnt, n /= i; while (n % i == 0); v.emplace_back(i, cnt); } } while (n > 1) { auto p = find_prime_factor(n); u32 cnt = 0; do ++cnt, n /= p; while (n % p == 0); v.emplace_back(p, cnt); } sort(v.begin(), v.end()); return v; } // <<< } using ::internal::is_prime; using ::internal::factor; // <<< int divisors_num(int x) { int ans = 1; for (auto [_, k] : factor(x)) { ans *= k+1; } return ans; } auto solve() { int x; cin >> x; int n = divisors_num(x); for (int y = 2*x; ; y += x) { if (divisors_num(y) == 2*n) { cout << y << '\n'; break; } } } int32_t main() { int t; cin >> t; while (t--) { solve(); // cout << (solve() ? "YES" : "NO") << '\n'; debug { cerr << endl; } } }