結果

問題 No.2045 Two Reflections
ユーザー akakimidoriakakimidori
提出日時 2022-08-19 22:00:41
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 6 ms / 2,000 ms
コード長 12,215 bytes
コンパイル時間 12,450 ms
コンパイル使用メモリ 401,624 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-08 08:41:09
合計ジャッジ時間 12,973 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `std::io::Write`
  --> src/main.rs:15:5
   |
15 | use std::io::Write;
   |     ^^^^^^^^^^^^^^
   |
   = note: `#[warn(unused_imports)]` on by default

warning: type alias `Map` is never used
  --> src/main.rs:17:6
   |
17 | type Map<K, V> = BTreeMap<K, V>;
   |      ^^^
   |
   = note: `#[warn(dead_code)]` on by default

warning: type alias `Set` is never used
  --> src/main.rs:18:6
   |
18 | type Set<T> = BTreeSet<T>;
   |      ^^^

warning: type alias `Deque` is never used
  --> src/main.rs:19:6
   |
19 | type Deque<T> = VecDeque<T>;
   |      ^^^^^

ソースコード

diff #

// (p, q) = (1, 1) は1通り
// 片方1の場合は2通り
// p, q が重ならない時は4通り
// 重なる時?
// 同じ操作が2回続くのは無意味
// pqpqpq, qpqpqp の異なるやつの個数
// pq の連打 と qp の連打
// pq連打で元に戻った時の逆回しを考えれば同じ
// pq の操作で何回で戻るかの計算はlcm
// 途中で挟まれるpで追加される状態ってのはどうするのか
// 単に2倍していいのか?
//

use std::collections::*;
use std::io::Write;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn run() {
    input! {
        n: usize,
        l: usize,
        r: usize,
    }
    let ans = if (l, r) == (1, 1) {
        M::one()
    } else if l.min(r) == 1 || (l, r) == (n, n) {
        M::new(2)
    } else if l + r <= n {
        M::new(4)
    } else {
        let mut a = (0..n).collect::<Vec<_>>();
        a[..l].reverse();
        a[(n - r)..].reverse();
        let mut dsu = DSU::new(n);
        for (i, a) in a.iter().enumerate() {
            dsu.unite(i, *a);
        }
        let mut elem = vec![false; n + 1];
        for i in 0..n {
            if i == dsu.root(i) {
                elem[dsu.size(i)] = true;
            }
        }
        let mut factor = vec![0; n + 1];
        enumerate_prime(n, |p| {
            for i in (1..=(n / p)).rev() {
                elem[i] |= elem[i * p];
                factor[i * p] = p;
            }
        });
        let mut used = vec![false; n + 1];
        let mut ans = M::new(2);
        for i in (2..=n).rev() {
            let mut m = i;
            let p = factor[i];
            while m % p == 0 {
                m /= p;
            }
            if !used[p] && m == 1 && elem[i] {
                ans *= M::from(i);
                used[p] = true;
            }
        }
        ans
    };
    println!("{}", ans);
}

fn main() {
    run();
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
//---------- begin union_find ----------
pub struct DSU {
    p: Vec<i32>,
}
impl DSU {
    pub fn new(n: usize) -> DSU {
        assert!(n < std::i32::MAX as usize);
        DSU { p: vec![-1; n] }
    }
    pub fn init(&mut self) {
        self.p.iter_mut().for_each(|p| *p = -1);
    }
    pub fn root(&self, mut x: usize) -> usize {
        assert!(x < self.p.len());
        while self.p[x] >= 0 {
            x = self.p[x] as usize;
        }
        x
    }
    pub fn same(&self, x: usize, y: usize) -> bool {
        assert!(x < self.p.len() && y < self.p.len());
        self.root(x) == self.root(y)
    }
    pub fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> {
        assert!(x < self.p.len() && y < self.p.len());
        let mut x = self.root(x);
        let mut y = self.root(y);
        if x == y {
            return None;
        }
        if self.p[x] > self.p[y] {
            std::mem::swap(&mut x, &mut y);
        }
        self.p[x] += self.p[y];
        self.p[y] = x as i32;
        Some((x, y))
    }
    pub fn parent(&self, x: usize) -> Option<usize> {
        assert!(x < self.p.len());
        let p = self.p[x];
        if p >= 0 {
            Some(p as usize)
        } else {
            None
        }
    }
    pub fn sum<F>(&self, mut x: usize, mut f: F) -> usize
    where
        F: FnMut(usize),
    {
        while let Some(p) = self.parent(x) {
            f(x);
            x = p;
        }
        x
    }
    pub fn size(&self, x: usize) -> usize {
        assert!(x < self.p.len());
        let r = self.root(x);
        (-self.p[r]) as usize
    }
}
//---------- end union_find ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;

// ---------- begin enumerate prime ----------
fn enumerate_prime<F>(n: usize, mut f: F)
where
    F: FnMut(usize),
{
    assert!(1 <= n && n <= 5 * 10usize.pow(8));
    let batch = (n as f64).sqrt().ceil() as usize;
    let mut is_prime = vec![true; batch + 1];
    for i in (2..).take_while(|p| p * p <= batch) {
        if is_prime[i] {
            let mut j = i * i;
            while let Some(p) = is_prime.get_mut(j) {
                *p = false;
                j += i;
            }
        }
    }
    let mut prime = vec![];
    for (i, p) in is_prime.iter().enumerate().skip(2) {
        if *p && i <= n {
            f(i);
            prime.push(i);
        }
    }
    let mut l = batch + 1;
    while l <= n {
        let r = std::cmp::min(l + batch, n + 1);
        is_prime.clear();
        is_prime.resize(r - l, true);
        for &p in prime.iter() {
            let mut j = (l + p - 1) / p * p - l;
            while let Some(is_prime) = is_prime.get_mut(j) {
                *is_prime = false;
                j += p;
            }
        }
        for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
            f(i + l);
        }
        l += batch;
    }
}
// ---------- end enumerate prime ----------

0