結果
| 問題 |
No.2045 Two Reflections
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2022-08-19 22:00:41 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 6 ms / 2,000 ms |
| コード長 | 12,215 bytes |
| コンパイル時間 | 12,450 ms |
| コンパイル使用メモリ | 401,624 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-08 08:41:09 |
| 合計ジャッジ時間 | 12,973 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:15:5 | 15 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: type alias `Map` is never used --> src/main.rs:17:6 | 17 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:18:6 | 18 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:19:6 | 19 | type Deque<T> = VecDeque<T>; | ^^^^^
ソースコード
// (p, q) = (1, 1) は1通り
// 片方1の場合は2通り
// p, q が重ならない時は4通り
// 重なる時?
// 同じ操作が2回続くのは無意味
// pqpqpq, qpqpqp の異なるやつの個数
// pq の連打 と qp の連打
// pq連打で元に戻った時の逆回しを考えれば同じ
// pq の操作で何回で戻るかの計算はlcm
// 途中で挟まれるpで追加される状態ってのはどうするのか
// 単に2倍していいのか?
//
use std::collections::*;
use std::io::Write;
type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
fn run() {
input! {
n: usize,
l: usize,
r: usize,
}
let ans = if (l, r) == (1, 1) {
M::one()
} else if l.min(r) == 1 || (l, r) == (n, n) {
M::new(2)
} else if l + r <= n {
M::new(4)
} else {
let mut a = (0..n).collect::<Vec<_>>();
a[..l].reverse();
a[(n - r)..].reverse();
let mut dsu = DSU::new(n);
for (i, a) in a.iter().enumerate() {
dsu.unite(i, *a);
}
let mut elem = vec![false; n + 1];
for i in 0..n {
if i == dsu.root(i) {
elem[dsu.size(i)] = true;
}
}
let mut factor = vec![0; n + 1];
enumerate_prime(n, |p| {
for i in (1..=(n / p)).rev() {
elem[i] |= elem[i * p];
factor[i * p] = p;
}
});
let mut used = vec![false; n + 1];
let mut ans = M::new(2);
for i in (2..=n).rev() {
let mut m = i;
let p = factor[i];
while m % p == 0 {
m /= p;
}
if !used[p] && m == 1 && elem[i] {
ans *= M::from(i);
used[p] = true;
}
}
ans
};
println!("{}", ans);
}
fn main() {
run();
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
//---------- begin union_find ----------
pub struct DSU {
p: Vec<i32>,
}
impl DSU {
pub fn new(n: usize) -> DSU {
assert!(n < std::i32::MAX as usize);
DSU { p: vec![-1; n] }
}
pub fn init(&mut self) {
self.p.iter_mut().for_each(|p| *p = -1);
}
pub fn root(&self, mut x: usize) -> usize {
assert!(x < self.p.len());
while self.p[x] >= 0 {
x = self.p[x] as usize;
}
x
}
pub fn same(&self, x: usize, y: usize) -> bool {
assert!(x < self.p.len() && y < self.p.len());
self.root(x) == self.root(y)
}
pub fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> {
assert!(x < self.p.len() && y < self.p.len());
let mut x = self.root(x);
let mut y = self.root(y);
if x == y {
return None;
}
if self.p[x] > self.p[y] {
std::mem::swap(&mut x, &mut y);
}
self.p[x] += self.p[y];
self.p[y] = x as i32;
Some((x, y))
}
pub fn parent(&self, x: usize) -> Option<usize> {
assert!(x < self.p.len());
let p = self.p[x];
if p >= 0 {
Some(p as usize)
} else {
None
}
}
pub fn sum<F>(&self, mut x: usize, mut f: F) -> usize
where
F: FnMut(usize),
{
while let Some(p) = self.parent(x) {
f(x);
x = p;
}
x
}
pub fn size(&self, x: usize) -> usize {
assert!(x < self.p.len());
let r = self.root(x);
(-self.p[r]) as usize
}
}
//---------- end union_find ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub struct ConstantModulo<const M: u32>;
impl<const M: u32> Modulo for ConstantModulo<{ M }> {
fn modulo() -> u32 {
M
}
}
pub struct ModInt<T>(u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
Self::new_unchecked(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= T::modulo() {
v -= T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
Self::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.is_zero() {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Default for ModInt<T> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
if v >= T::modulo() {
v -= T::modulo();
}
ModInt::new_unchecked(v)
}
}
impl<T> ModInt<T> {
pub fn new_unchecked(n: u32) -> Self {
ModInt(n, PhantomData)
}
pub fn zero() -> Self {
ModInt::new_unchecked(0)
}
pub fn one() -> Self {
ModInt::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<T: Modulo> ModInt<T> {
pub fn new(d: u32) -> Self {
ModInt::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(!self.is_zero());
self.pow(T::modulo() as u64 - 2)
}
pub fn fact(n: usize) -> Self {
(1..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn perm(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn binom(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
let k = k.min(n - k);
let mut nu = Self::one();
let mut de = Self::one();
for i in 0..k {
nu *= Self::from(n - i);
de *= Self::from(i + 1);
}
nu * de.inv()
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
inv: Vec<ModInt<T>>,
}
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..=n {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc { fact, ifact, inv }
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
type M = ModInt<ConstantModulo<998_244_353>>;
// ---------- begin enumerate prime ----------
fn enumerate_prime<F>(n: usize, mut f: F)
where
F: FnMut(usize),
{
assert!(1 <= n && n <= 5 * 10usize.pow(8));
let batch = (n as f64).sqrt().ceil() as usize;
let mut is_prime = vec![true; batch + 1];
for i in (2..).take_while(|p| p * p <= batch) {
if is_prime[i] {
let mut j = i * i;
while let Some(p) = is_prime.get_mut(j) {
*p = false;
j += i;
}
}
}
let mut prime = vec![];
for (i, p) in is_prime.iter().enumerate().skip(2) {
if *p && i <= n {
f(i);
prime.push(i);
}
}
let mut l = batch + 1;
while l <= n {
let r = std::cmp::min(l + batch, n + 1);
is_prime.clear();
is_prime.resize(r - l, true);
for &p in prime.iter() {
let mut j = (l + p - 1) / p * p - l;
while let Some(is_prime) = is_prime.get_mut(j) {
*is_prime = false;
j += p;
}
}
for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
f(i + l);
}
l += batch;
}
}
// ---------- end enumerate prime ----------
akakimidori