結果
問題 | No.2045 Two Reflections |
ユーザー | akakimidori |
提出日時 | 2022-08-19 22:00:41 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 6 ms / 2,000 ms |
コード長 | 12,215 bytes |
コンパイル時間 | 12,450 ms |
コンパイル使用メモリ | 401,624 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-08 08:41:09 |
合計ジャッジ時間 | 12,973 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:15:5 | 15 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: type alias `Map` is never used --> src/main.rs:17:6 | 17 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:18:6 | 18 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:19:6 | 19 | type Deque<T> = VecDeque<T>; | ^^^^^
ソースコード
// (p, q) = (1, 1) は1通り // 片方1の場合は2通り // p, q が重ならない時は4通り // 重なる時? // 同じ操作が2回続くのは無意味 // pqpqpq, qpqpqp の異なるやつの個数 // pq の連打 と qp の連打 // pq連打で元に戻った時の逆回しを考えれば同じ // pq の操作で何回で戻るかの計算はlcm // 途中で挟まれるpで追加される状態ってのはどうするのか // 単に2倍していいのか? // use std::collections::*; use std::io::Write; type Map<K, V> = BTreeMap<K, V>; type Set<T> = BTreeSet<T>; type Deque<T> = VecDeque<T>; fn run() { input! { n: usize, l: usize, r: usize, } let ans = if (l, r) == (1, 1) { M::one() } else if l.min(r) == 1 || (l, r) == (n, n) { M::new(2) } else if l + r <= n { M::new(4) } else { let mut a = (0..n).collect::<Vec<_>>(); a[..l].reverse(); a[(n - r)..].reverse(); let mut dsu = DSU::new(n); for (i, a) in a.iter().enumerate() { dsu.unite(i, *a); } let mut elem = vec![false; n + 1]; for i in 0..n { if i == dsu.root(i) { elem[dsu.size(i)] = true; } } let mut factor = vec![0; n + 1]; enumerate_prime(n, |p| { for i in (1..=(n / p)).rev() { elem[i] |= elem[i * p]; factor[i * p] = p; } }); let mut used = vec![false; n + 1]; let mut ans = M::new(2); for i in (2..=n).rev() { let mut m = i; let p = factor[i]; while m % p == 0 { m /= p; } if !used[p] && m == 1 && elem[i] { ans *= M::from(i); used[p] = true; } } ans }; println!("{}", ans); } fn main() { run(); } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- //---------- begin union_find ---------- pub struct DSU { p: Vec<i32>, } impl DSU { pub fn new(n: usize) -> DSU { assert!(n < std::i32::MAX as usize); DSU { p: vec![-1; n] } } pub fn init(&mut self) { self.p.iter_mut().for_each(|p| *p = -1); } pub fn root(&self, mut x: usize) -> usize { assert!(x < self.p.len()); while self.p[x] >= 0 { x = self.p[x] as usize; } x } pub fn same(&self, x: usize, y: usize) -> bool { assert!(x < self.p.len() && y < self.p.len()); self.root(x) == self.root(y) } pub fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> { assert!(x < self.p.len() && y < self.p.len()); let mut x = self.root(x); let mut y = self.root(y); if x == y { return None; } if self.p[x] > self.p[y] { std::mem::swap(&mut x, &mut y); } self.p[x] += self.p[y]; self.p[y] = x as i32; Some((x, y)) } pub fn parent(&self, x: usize) -> Option<usize> { assert!(x < self.p.len()); let p = self.p[x]; if p >= 0 { Some(p as usize) } else { None } } pub fn sum<F>(&self, mut x: usize, mut f: F) -> usize where F: FnMut(usize), { while let Some(p) = self.parent(x) { f(x); x = p; } x } pub fn size(&self, x: usize) -> usize { assert!(x < self.p.len()); let r = self.root(x); (-self.p[r]) as usize } } //---------- end union_find ---------- // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo<const M: u32>; impl<const M: u32> Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt<T>(u32, PhantomData<T>); impl<T> Clone for ModInt<T> { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl<T> Copy for ModInt<T> {} impl<T: Modulo> Add for ModInt<T> { type Output = ModInt<T>; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> AddAssign for ModInt<T> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<T: Modulo> Sub for ModInt<T> { type Output = ModInt<T>; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> SubAssign for ModInt<T> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<T: Modulo> Mul for ModInt<T> { type Output = ModInt<T>; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl<T: Modulo> MulAssign for ModInt<T> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<T: Modulo> Neg for ModInt<T> { type Output = ModInt<T>; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl<T> std::fmt::Display for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> std::fmt::Debug for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> Default for ModInt<T> { fn default() -> Self { Self::zero() } } impl<T: Modulo> std::str::FromStr for ModInt<T> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<T: Modulo> From<usize> for ModInt<T> { fn from(val: usize) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl<T: Modulo> From<u64> for ModInt<T> { fn from(val: u64) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl<T: Modulo> From<i64> for ModInt<T> { fn from(val: i64) -> ModInt<T> { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl<T> ModInt<T> { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl<T: Modulo> ModInt<T> { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<T> { fact: Vec<ModInt<T>>, ifact: Vec<ModInt<T>>, inv: Vec<ModInt<T>>, } impl<T: Modulo> Precalc<T> { pub fn new(n: usize) -> Precalc<T> { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt<T> { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt<T> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<T> { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt<ConstantModulo<998_244_353>>; // ---------- begin enumerate prime ---------- fn enumerate_prime<F>(n: usize, mut f: F) where F: FnMut(usize), { assert!(1 <= n && n <= 5 * 10usize.pow(8)); let batch = (n as f64).sqrt().ceil() as usize; let mut is_prime = vec![true; batch + 1]; for i in (2..).take_while(|p| p * p <= batch) { if is_prime[i] { let mut j = i * i; while let Some(p) = is_prime.get_mut(j) { *p = false; j += i; } } } let mut prime = vec![]; for (i, p) in is_prime.iter().enumerate().skip(2) { if *p && i <= n { f(i); prime.push(i); } } let mut l = batch + 1; while l <= n { let r = std::cmp::min(l + batch, n + 1); is_prime.clear(); is_prime.resize(r - l, true); for &p in prime.iter() { let mut j = (l + p - 1) / p * p - l; while let Some(is_prime) = is_prime.get_mut(j) { *is_prime = false; j += p; } } for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) { f(i + l); } l += batch; } } // ---------- end enumerate prime ----------