結果

問題 No.2056 非力なレッド
ユーザー namakoiscat
提出日時 2022-08-26 22:19:54
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,043 bytes
コンパイル時間 2,265 ms
コンパイル使用メモリ 211,984 KB
最終ジャッジ日時 2025-01-31 05:03:46
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 31 WA * 7
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// __builtin_popcount() ;
// multiset ;
// unordered_set ;
// reverse ;
#include <bits/stdc++.h>
using namespace std;
// #include<boost/multiprecision/cpp_int.hpp>
// using namespace boost::multiprecision;
typedef long long ll;
typedef string st ;
typedef long double ld ;
typedef unsigned long long ull ;
const ll mod0 = 1000000007;
const ll mod1 = 998244353 ;
const ll LINF = 1000000000000000000 ; //(10^18)
const int INF = 1000000000 ; // (10^9)
#define pb push_back
#define ppb pop_back
#define pf push_front
#define ppf pop_front
#define all(x) x.begin(), x.end()
#define rep(i,a,n) for (ll i = a; i <= (n); ++i)
#define re return 0;
#define fore(i,a) for(auto &i:a)
#define V vector
const ld pai = acos(-1) ;
using P = pair<ll,ll> ;
using Edge = tuple<ll,ll,ll> ;
using AAA = tuple<ll,ll,ll,ll> ;
#define C cout
#define E "\n";
//
st zz = "abcdefghijklmnopqrstuvwxyz" ;
st ZZ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;
st tintin = "%" ;
st Y = "Yes" ;
st YY = "No" ;
st at = "atcoder" ;
st KU = " " ;
void chmin(ll& x ,ll y){x = min(x,y) ;}
void chmax(ll& x ,ll y){x = max(x,y) ;}
vector<ll> Y4 = {0,1,0,-1} ;
vector<ll> X4 = {1,0,-1,0} ;
vector<ll> Y8 = {0,1,1,1,0,-1,-1,-1} ;
vector<ll> X8 = {1,1,0,-1,-1,-1,0,1} ;
ll gcd(ll a, ll b){
if(b == 0){
return a;
}
return gcd(b,a%b) ;
}
ll lcm(ll a, ll b){
ll ans = a*b /gcd(a,b) ;
return ans ;
}
// true --→  false --→ 
bool nis(ll a){
bool flag = true ;
rep(i,2,sqrt(a)+1){
if(a%i == 0){
flag = false ;
break ;
}
}
return flag ;
}
ll jun(ll a,ll b, ll c,ll rank ){
vector<ll> ANS ;
ANS.pb(-LINF) ;
ANS.pb(a) ;
ANS.pb(b) ;
ANS.pb(c) ;
sort(all(ANS)) ;
return ANS[rank] ;
}
// UF.initrep
vector<ll> par;
class UnionFind {
public:
//
void init(ll sz) {
par.resize(sz,-1);
}
//
ll root(ll x) {
if (par[x] < 0) return x;
return par[x] = root(par[x]);
}
//
bool unite(ll x, ll y) {
x = root(x); y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x,y);
par[x] += par[y];
par[y] = x;
return true;
}
//
bool same(ll x, ll y) { return root(x) == root(y);}
//
ll size(ll x) { return -par[root(x)];}
};
UnionFind UF ;
vector<ll> enumdiv(ll n) {
vector<ll> S;
for (ll i = 1; i*i <= n; i++) if (n%i == 0) { S.pb(i); if (i*i != n) S.pb(n / i); }
sort(S.begin(), S.end());
return S;
}
template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;
template<typename T> using max_priority_queue = priority_queue<T, vector<T>, less<T>> ;
// 使 min_priority_queue<ll ()> Q ;
vector<pair<long long, long long>> prime_factorize(long long N){
vector<pair<long long, long long>> res;
for(long long a = 2; a * a <= N; ++a){
if(N % a != 0) continue;
long long ex = 0;
while(N % a == 0) ++ex, N /= a;
res.push_back({a,ex});
}
if(N != 1) res.push_back({N,1});
return res;
}
ll dist[1 << 18] ;
vector<ll> GG[1 << 18] ;
void bfs(ll N ,ll a){
queue<ll> Q ;
Q.push(a) ;
rep(i,0,N){
dist[i] = -1 ;
}
dist[a] = 0 ;
while(!Q.empty()){
ll pos = Q.front() ;
Q.pop() ;
fore(u,GG[pos]){
if(dist[u] == -1){
dist[u] = dist[pos] + 1 ;
Q.push(u) ;
}
}
}
}
ll binpower(ll a, ll b,ll c) {
ll ans = 1;
while (b != 0) {
if (b % 2 == 1) {
ans = (ans)*a % c;
}
a = a*a % c;
b /= 2;
}
return ans;
}
// ll dp[][][] ;
// ll dp[][][][] ;
template<class CV>
class RAQ {
V<CV> A ;
public :
RAQ ()=default;
RAQ (ll N){ build(N); }
RAQ (const vector<CV>& A){ build(A); }
void build(ll N){
A.assign(N,CV{}) ;
}
void build(const V<CV>& A){
this->A=A;
for(ll i=1;i<=A.size();i++) if(i+(i&-i)<=A.size()) (this->A)[i-1]-=(this->A)[i+(i&-i)-1];
}
void add(ll l , ll r , const CV& val){
if(l == 0){
for(;r>0;r-=r&-r) A[r-1]+=val;
return;
}
add(0,r,val) ;
add(0,l,-val) ;
}
CV get(ll i )const{
CV res{} ;
for(i++ ; i <= A.size(); i+=i&-i)res += A[i-1] ;
return res ;
}
};
int main(void){
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
// nis(ll a) true
// jun(ll a,ll b,ll c, ll d) d
// gcd(ll a , ll b) gcd
// lcm(ll a ,ll b ) lcd
// UF UF.init(ll N) ; UF.root(i) ; UF.unite(a,b) ; UF.same(a,b) ; UF.size(i) ;
// enumdiv(ll a )
// prime_factorize(ll p) ab
// bfs(ll N , ll a ) N = , a =  
// binpower(a,b,c) ab O(logb)
// mod0 --→ 1000000007 mod1 --→ 998244353
ll N,X,M ;
cin>>N>>X>>M ;
V<ll> A(N+1) ;
rep(i,1,N){
cin>>A[i] ;
}
V<bool> B(N+1) ;
RAQ<ll> CC(N+1) ;
ll ma = -1 ;
rep(i,1,N){
if(X <= A[i]){
B[i] = true ;
ma = i ;
while(1){
if(X > A[i])break ;
A[i] /= 2 ;
CC.add(i,i+1,1) ;
}
}
}
ll p = min(N,M) ;
ll sum = 0 ;
for(ll i = N ; i >= 1 ;i --){
ll pp = max(0LL,CC.get(i)) ;
ll kai = i * pp ;
sum += kai ;
CC.add(1,i,-pp) ;
}
if(p >= sum){
C << Y << E
}else{
C << YY << E
}
// if(dx < 0 || dy < 0 || dx >= W || dy >= H) continue ;
// ld p = sqrt(abs((A[i] - A[j])*(A[i] - A[j])) + abs((B[i] - B[j])*(B[i] - B[j]))) ;
// C << fixed << setprecision(10) <<
re
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0