結果

問題 No.2075 GCD Subsequence
ユーザー ei1333333ei1333333
提出日時 2022-09-16 22:02:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 676 ms / 4,000 ms
コード長 5,417 bytes
コンパイル時間 2,722 ms
コンパイル使用メモリ 212,796 KB
実行使用メモリ 63,340 KB
最終ジャッジ日時 2024-12-21 20:20:58
合計ジャッジ時間 22,791 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 484 ms
62,336 KB
testcase_01 AC 469 ms
62,336 KB
testcase_02 AC 485 ms
62,336 KB
testcase_03 AC 484 ms
62,464 KB
testcase_04 AC 491 ms
62,464 KB
testcase_05 AC 485 ms
62,336 KB
testcase_06 AC 493 ms
62,340 KB
testcase_07 AC 497 ms
62,464 KB
testcase_08 AC 554 ms
62,848 KB
testcase_09 AC 590 ms
63,152 KB
testcase_10 AC 568 ms
62,848 KB
testcase_11 AC 579 ms
63,124 KB
testcase_12 AC 576 ms
62,948 KB
testcase_13 AC 545 ms
62,780 KB
testcase_14 AC 564 ms
62,980 KB
testcase_15 AC 548 ms
62,848 KB
testcase_16 AC 565 ms
62,848 KB
testcase_17 AC 596 ms
63,104 KB
testcase_18 AC 668 ms
63,136 KB
testcase_19 AC 662 ms
63,232 KB
testcase_20 AC 666 ms
63,340 KB
testcase_21 AC 669 ms
63,196 KB
testcase_22 AC 673 ms
63,232 KB
testcase_23 AC 664 ms
63,232 KB
testcase_24 AC 676 ms
63,188 KB
testcase_25 AC 652 ms
63,300 KB
testcase_26 AC 665 ms
63,216 KB
testcase_27 AC 669 ms
63,232 KB
testcase_28 AC 651 ms
63,232 KB
testcase_29 AC 494 ms
62,392 KB
testcase_30 AC 501 ms
62,404 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;

using int64 = long long;

const int mod = 998244353;

const int64 infll = (1LL << 62) - 1;

const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for (int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for (T &in: v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for (auto &e: t) fill_v(e, v);
}

template< typename F >
struct FixPoint: F {
  explicit FixPoint(F &&f): F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}

#line 1 "math/combinatorics/montgomery-mod-int.hpp"
/**
 * @brief Montgomery ModInt
 */
template< uint32_t mod, bool fast = false >
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using i64 = int64_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for(i32 i = 0; i < 4; i++) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;

  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 x;

  MontgomeryModInt() : x{} {}

  MontgomeryModInt(const i64 &a)
      : x(reduce(u64(fast ? a : (a % mod + mod)) * n2)) {}

  static constexpr u32 reduce(const u64 &b) {
    return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32);
  }

  mint &operator+=(const mint &p) {
    if(i32(x += p.x - 2 * mod) < 0) x += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &p) {
    if(i32(x -= p.x) < 0) x += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &p) {
    x = reduce(u64(x) * p.x);
    return *this;
  }

  mint &operator/=(const mint &p) {
    *this *= p.inverse();
    return *this;
  }

  mint operator-() const { return mint() - *this; }

  mint operator+(const mint &p) const { return mint(*this) += p; }

  mint operator-(const mint &p) const { return mint(*this) -= p; }

  mint operator*(const mint &p) const { return mint(*this) *= p; }

  mint operator/(const mint &p) const { return mint(*this) /= p; }

  bool operator==(const mint &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); }

  bool operator!=(const mint &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); }

  u32 get() const {
    u32 ret = reduce(x);
    return ret >= mod ? ret - mod : ret;
  }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  mint inverse() const {
    return pow(mod - 2);
  }

  friend ostream &operator<<(ostream &os, const mint &p) {
    return os << p.get();
  }

  friend istream &operator>>(istream &is, mint &a) {
    i64 t;
    is >> t;
    a = mint(t);
    return is;
  }

  static u32 get_mod() { return mod; }
};

using modint = MontgomeryModInt< mod >;


const int MAX_A = 1e6;
vector< int > fs[MAX_A + 1];

int main() {
  int N;
  cin >> N;
  vector< int > A(N);
  cin >> A;

  for(int i = 2; i <= MAX_A; i++) {
    if(fs[i].empty()) {
      for(int j = i; j <= MAX_A; j += i) {
        fs[j].emplace_back(i);
      }
    }
  }

  vector< modint > dp(MAX_A + 1);
  modint ans = 0;
  for(int i = 0; i < N; i++) {
    auto& vs = fs[A[i]];
    modint ret = 1;
    MFP([&](auto calc, int idx, int mul, bool f) -> void {
      if(idx == vs.size()) {
        if(mul == 1) return;
        if(f) ret += dp[mul];
        else ret -= dp[mul];
      } else {
        calc(idx + 1, mul * vs[idx], f ^ 1);
        calc(idx + 1, mul, f);
      }
    }) (0, 1, 0);
    ans += ret;
    MFP([&](auto calc, int idx, int mul) -> void {
      if(idx == vs.size()) {
        dp[mul] += ret;
      } else {
        calc(idx + 1, mul * vs[idx]);
        calc(idx + 1, mul);
      }
    }) (0, 1);
  }
  cout << ans << endl;
}
0