結果

問題 No.1799 Summer Day
ユーザー akuaakua
提出日時 2022-09-18 04:31:09
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 460 ms / 2,000 ms
コード長 6,664 bytes
コンパイル時間 3,871 ms
コンパイル使用メモリ 195,120 KB
実行使用メモリ 315,904 KB
最終ジャッジ日時 2024-12-22 01:11:50
合計ジャッジ時間 16,385 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 454 ms
315,904 KB
testcase_01 AC 457 ms
315,648 KB
testcase_02 AC 450 ms
315,648 KB
testcase_03 AC 449 ms
315,776 KB
testcase_04 AC 460 ms
315,904 KB
testcase_05 AC 454 ms
315,776 KB
testcase_06 AC 453 ms
315,776 KB
testcase_07 AC 452 ms
315,776 KB
testcase_08 AC 454 ms
315,776 KB
testcase_09 AC 448 ms
315,648 KB
testcase_10 AC 450 ms
315,776 KB
testcase_11 AC 449 ms
315,648 KB
testcase_12 AC 457 ms
315,776 KB
testcase_13 AC 459 ms
315,776 KB
testcase_14 AC 448 ms
315,896 KB
testcase_15 AC 459 ms
315,692 KB
testcase_16 AC 452 ms
315,776 KB
testcase_17 AC 450 ms
315,776 KB
testcase_18 AC 453 ms
315,776 KB
testcase_19 AC 453 ms
315,776 KB
testcase_20 AC 449 ms
315,684 KB
testcase_21 AC 454 ms
315,748 KB
testcase_22 AC 453 ms
315,888 KB
testcase_23 AC 453 ms
315,808 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <atcoder/all>
#include <iostream> // cout, endl, cin
#include <string> // string, to_string, stoi
#include <vector> // vector
#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound
#include <utility> // pair, make_pair
#include <tuple> // tuple, make_tuple
#include <cstdint> // int64_t, int*_t
#include <cstdio> // printf
#include <map> // map
#include <queue> // queue, priority_queue
#include <set> // set
#include <stack> // stack
#include <deque> // deque
#include <unordered_map> // unordered_map
#include <unordered_set> // unordered_set
#include <bitset> // bitset
#include <cctype> // isupper, islower, isdigit, toupper, tolower
#include <math.h>
#include <iomanip>
using namespace std;  
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define repi(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
typedef long long ll;
typedef unsigned long long ull;
const ll inf=1e18;  
using graph = vector<vector<int> > ;
using P= pair<ll,ll>;  
using vi=vector<int>;
using vvi=vector<vi>;
using vll=vector<ll>; 
using vvll=vector<vll>;
using vp=vector<P>;
using vpp=vector<vp>;
//string T="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
//string S="abcdefghijklmnopqrstuvwxyz";
//g++ main.cpp -std=c++14 -I .  
//cout <<setprecision(20);
//cout << fixed << setprecision(10);
//cin.tie(0); ios::sync_with_stdio(false);
const double PI = acos(-1);
 
int vx[]={0,1,0,-1,-1,1,1,-1},vy[]={1,0,-1,0,1,1,-1,-1};
 
ll pow_pow(ll x,ll n,ll mod){
    if(n==0) return 1; 
    x%=mod;
    ll res=pow_pow(x*x%mod,n/2,mod);
    if(n&1)res=res*x%mod;
    return res;
}
 struct UnionFind { vector<int> par, siz; UnionFind(int n) : par(n, -1) , siz(n, 1) { } int root(int x) { if (par[x] == -1) return x;
        else return par[x] = root(par[x]);
    }
    bool issame(int x, int y) {
        return root(x) == root(y);
    }
    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false; 
        if (siz[x] < siz[y]) swap(x, y);
        par[y] = x;
        siz[x] += siz[y];
        return true;
    }
    int size(int x) {
        return siz[root(x)];
    }
};
 
int gcd(int x,int y){
    if(y==0)return x;
    return gcd(y,x%y);
}
 
ll lcm(ll x,ll y){
    return ll(x/gcd(x,y))*y;
}
template<class T> bool chmin(T& a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    else return false;
}
template<class T> bool chmax(T& a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    else return false;
}
 
// https://youtu.be/L8grWxBlIZ4?t=9858
// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize
// https://youtu.be/8uowVvQ_-Mo?t=1329 : division
const ll mod =1e9+7;
struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
  mint operator+(const mint a) const { return mint(*this) += a;}
  mint operator-(const mint a) const { return mint(*this) -= a;}
  mint operator*(const mint a) const { return mint(*this) *= a;}
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }
 
  // for prime mod
  mint inv() const { return pow(mod-2);}
  mint& operator/=(const mint a) { return *this *= a.inv();}
  mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, const mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
// combination mod prime
// https://www.youtube.com/watch?v=8uowVvQ_-Mo&feature=youtu.be&t=1619
struct combination {
  vector<mint> fact, ifact;
  combination(int n):fact(n+1),ifact(n+1) {
    //assert(n < mod);
    fact[0] = 1;
    for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;
    ifact[n] = fact[n].inv();
    for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;
  }
  mint operator()(int n, int k) {
    if (k < 0 || k > n) return 0;
    return fact[n]*ifact[k]*ifact[n-k];
  }
  mint p(int n, int k) {
    return fact[n]*ifact[n-k];
  }
} c(20000050);
using vm=vector<mint> ;
using vvm=vector<vm> ;
 
 
ll sqrt_(ll x) {
  ll l = 0, r = ll(3e9)+1;
  while (l+1<r) {
    ll c = (l+r)/2;
    if (c*c <= x) l = c; else r = c;
  }
  return l;
}
 
 
int valid(int x,int y,int h,int w){
  if(x>=0 && y>=0 && x<h && y<w)return 1;
  else return 0;
}
 
 
 
 
ll comb[51][51];
 
void init_comb(){
  comb[0][0]=1;
  for(int i=1; i<=50; i++){
    for(int j=0; j<=i; j++){
      if(j==0 || j==i)comb[i][j]=1;
      else comb[i][j]=comb[i-1][j]+comb[i-1][j-1];
    }
  }
}
 
ll nCk(int n,int k){
  return comb[n][k];
}
 
struct edge{
  int to; ll cost;
  edge(int to,ll cost) : to(to),cost(cost) {}
}; 
 
using ve=vector<edge>;
using vve =vector<ve>;
 
map<ll,ll>d;
void comp(vll&a){
  set<ll>s(a.begin(),a.end());
  int cnt=0;
  for(auto y:s)d[y]=cnt++;
  for(auto&y:a)y=d[y];
}

const int MAX_ROW = 510; // to be set appropriately
const int MAX_COL = 510; // to be set appropriately
struct BitMatrix {
    int H, W;
    bitset<MAX_COL> val[MAX_ROW];
    BitMatrix(int m = 1, int n = 1) : H(m), W(n) {}
    inline bitset<MAX_COL>& operator [] (int i) {return val[i];}
};

int GaussJordan(BitMatrix &A, bool is_extended = false) {
    int rank = 0;
    for (int col = 0; col < A.W; ++col) {
        if (is_extended && col == A.W - 1) break;
        int pivot = -1;
        for (int row = rank; row < A.H; ++row) {
            if (A[row][col]) {
                pivot = row;
                break;
            }
        }
        if (pivot == -1) continue;
        swap(A[pivot], A[rank]);
        for (int row = 0; row < A.H; ++row) {
            if (row != rank && A[row][col]) A[row] ^= A[rank];
        }
        ++rank;
    }
    return rank;
}

int linear_equation(BitMatrix A, vector<int> b, vector<int> &res) {
    int m = A.H, n = A.W;
    BitMatrix M(m, n + 1);
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) M[i][j] = A[i][j];
        M[i][n] = b[i];
    }
    int rank = GaussJordan(M, true);

    // check if it has no solution
    for (int row = rank; row < m; ++row) if (M[row][n]) return -1;

    // answer
    res.assign(n, 0);
    for (int i = 0; i < rank; ++i) res[i] = M[i][n];
    return rank;
};


int main(){cin.tie(0); ios::sync_with_stdio(false);
  int n,s; cin >> n >> s;
  if((s+n-1)/n>=30){
    cout << "No" << endl;
    return 0;
  }
  if(s>=25){
    cout << "Yes" << endl;
  }
  else cout << "No" << endl;

}
0