結果
問題 | No.800 四平方定理 |
ユーザー | vwxyz |
提出日時 | 2022-09-22 15:32:04 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 587 ms / 2,000 ms |
コード長 | 3,232 bytes |
コンパイル時間 | 185 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 166,912 KB |
最終ジャッジ日時 | 2024-06-01 17:57:00 |
合計ジャッジ時間 | 14,487 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 260 ms
164,480 KB |
testcase_01 | AC | 263 ms
164,608 KB |
testcase_02 | AC | 267 ms
164,480 KB |
testcase_03 | AC | 264 ms
164,736 KB |
testcase_04 | AC | 266 ms
164,736 KB |
testcase_05 | AC | 267 ms
164,608 KB |
testcase_06 | AC | 265 ms
164,480 KB |
testcase_07 | AC | 266 ms
164,608 KB |
testcase_08 | AC | 264 ms
164,608 KB |
testcase_09 | AC | 266 ms
164,480 KB |
testcase_10 | AC | 409 ms
166,656 KB |
testcase_11 | AC | 437 ms
166,784 KB |
testcase_12 | AC | 433 ms
166,912 KB |
testcase_13 | AC | 419 ms
166,912 KB |
testcase_14 | AC | 434 ms
166,656 KB |
testcase_15 | AC | 431 ms
166,912 KB |
testcase_16 | AC | 428 ms
166,656 KB |
testcase_17 | AC | 421 ms
166,656 KB |
testcase_18 | AC | 423 ms
166,656 KB |
testcase_19 | AC | 422 ms
166,656 KB |
testcase_20 | AC | 249 ms
164,224 KB |
testcase_21 | AC | 251 ms
163,968 KB |
testcase_22 | AC | 428 ms
166,784 KB |
testcase_23 | AC | 573 ms
166,656 KB |
testcase_24 | AC | 567 ms
166,912 KB |
testcase_25 | AC | 577 ms
166,912 KB |
testcase_26 | AC | 254 ms
163,968 KB |
testcase_27 | AC | 255 ms
164,096 KB |
testcase_28 | AC | 587 ms
166,784 KB |
testcase_29 | AC | 587 ms
166,784 KB |
testcase_30 | AC | 574 ms
166,784 KB |
testcase_31 | AC | 546 ms
166,656 KB |
testcase_32 | AC | 574 ms
166,784 KB |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): pow_p=[1] for _ in range(e): pow_p.append(pow_p[-1]*p) divisors=[i*j for i in divisors for j in pow_p] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 P=Prime(10**6) N,D=map(int,readline().split()) cnt=[0]*(8*10**6+1) for i in range(1,N+1): for j in range(i,N+1): cnt[(i+j)*(j-i)]+=1 ans=sum(cnt[abs(D-x**2-y**2)] for x in range(1,N+1) for y in range(1,N+1)) print(ans)