結果
問題 | No.2092 Conjugation |
ユーザー | Moss_Local |
提出日時 | 2022-10-07 21:24:07 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 18 ms / 2,000 ms |
コード長 | 17,417 bytes |
コンパイル時間 | 13,954 ms |
コンパイル使用メモリ | 382,608 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-12 05:48:21 |
合計ジャッジ時間 | 15,638 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 12 ms
6,944 KB |
testcase_08 | AC | 15 ms
6,940 KB |
testcase_09 | AC | 13 ms
6,944 KB |
testcase_10 | AC | 14 ms
6,944 KB |
testcase_11 | AC | 14 ms
6,940 KB |
testcase_12 | AC | 13 ms
6,944 KB |
testcase_13 | AC | 13 ms
6,944 KB |
testcase_14 | AC | 12 ms
6,944 KB |
testcase_15 | AC | 13 ms
6,944 KB |
testcase_16 | AC | 16 ms
6,944 KB |
testcase_17 | AC | 18 ms
6,940 KB |
testcase_18 | AC | 17 ms
6,940 KB |
testcase_19 | AC | 3 ms
6,940 KB |
コンパイルメッセージ
warning: unnecessary parentheses around type --> src/main.rs:85:15 | 85 | fn readi() -> (i64) { | ^ ^ | = note: `#[warn(unused_parens)]` on by default help: remove these parentheses | 85 - fn readi() -> (i64) { 85 + fn readi() -> i64 { | warning: variable does not need to be mutable --> src/main.rs:609:9 | 609 | let mut vec: Vec<usize> = read_vec(); | ----^^^ | | | help: remove this `mut` | = note: `#[warn(unused_mut)]` on by default warning: variable `X` should have a snake case name --> src/main.rs:332:13 | 332 | let X = x * (a2 * (b2 + c2 - a2)) + y * (b2 * (c2 + a2 - b2)) + z * (c2 * (a2 + b2 - c2)); | ^ help: convert the identifier to snake case (notice the capitalization): `x` | = note: `#[warn(non_snake_case)]` on by default warning: variable `Y` should have a snake case name --> src/main.rs:333:13 | 333 | let Y = a2 * (b2 + c2 - a2) + b2 * (c2 + a2 - b2) + c2 * (a2 + b2 - c2); | ^ help: convert the identifier to snake case (notice the capitalization): `y`
ソースコード
// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] use core::num; use std::any::Any; use std::cmp::Ordering::*; use std::collections::btree_map::Values; use std::collections::*; use std::convert::*; use std::convert::{From, Into}; use std::error::Error; use std::f32::consts::E; use std::fmt::Debug; use std::fmt::Display; use std::fs::File; use std::hash::Hash; use std::io::prelude::*; use std::io::*; use std::iter::Filter; use std::iter::FromIterator; use std::marker::Copy; use std::mem::*; use std::ops::BitAnd; use std::ops::Bound::*; use std::ops::RangeBounds; use std::ops::{Add, Mul, Neg, Sub}; use std::process; use std::slice::from_raw_parts; use std::str; use std::vec; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const LINF: i64 = 2147483647; const INF128: i128 = 1223372036854775807000000000000; const MOD: i64 = 1000000007; // const MOD: i64 = 998244353; const UMOD: usize = MOD as usize; const M_PI: f64 = 3.14159265358979323846; // const MOD: i64 = INF; use std::cmp::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { println!("{}", $x); }; } macro_rules! d { ($x:expr) => { println!("{:?}", $x); }; } #[allow(unused_macros)] pub mod macros { macro_rules! min { ($x: expr) => { $x }; ($x: expr, $($xs: expr),+) => {{ let y = macros::min!($($xs),+); std::cmp::min($x, y) } }} macro_rules! max { ($x: expr) => { $x }; ($x: expr, $($xs: expr),+) => {{ let y = macros::max!($($xs),+); std::cmp::max($x, y) } }} macro_rules! chmin { ($x: expr, $($xs: expr),+) => {{ let y = macros::min!($($xs),+); if $x > y { $x = y; true } else { false } }}} macro_rules! chmax { ($x: expr, $($xs: expr),+) => {{ let y = macros::max!($($xs),+); if $x < y { $x = y; true } else { false } }}} macro_rules! multi_vec { ($element: expr; ($len: expr, $($lens: expr),*)) => ( vec![macros::multi_vec![$element; ($($lens),*)]; $len] ); ($element: expr; ($len: expr)) => ( vec![$element; $len] ); } macro_rules! multi_box_array { ($element: expr; ($len: expr, $($lens: expr),*)) => ( vec![macros::multi_box_array![$element; ($($lens),*)]; $len].into_boxed_slice() ); ($element: expr; ($len: expr)) => ( vec![$element; $len].into_boxed_slice() ); } #[allow(unused_imports)] pub(super) use {chmax, chmin, max, min, multi_box_array, multi_vec}; } fn main() { solve(); } // use str::Chars; #[allow(dead_code)] fn read<T: std::str::FromStr>() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } #[allow(dead_code)] fn readi() -> (i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); iter.next().unwrap().parse::<i64>().unwrap() } #[allow(dead_code)] fn read_vec<T: std::str::FromStr>() -> Vec<T> { read::<String>() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_mat<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<i64>().unwrap(), iter.next().unwrap().parse::<i64>().unwrap(), ) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<i64>().unwrap(), iter.next().unwrap().parse::<i64>().unwrap(), iter.next().unwrap().parse::<i64>().unwrap(), ) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<usize>().unwrap(), iter.next().unwrap().parse::<usize>().unwrap(), ) } #[allow(dead_code)] fn readff() -> (f64, f64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<f64>().unwrap(), iter.next().unwrap().parse::<f64>().unwrap(), ) } fn readcc() -> (char, char) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<char>().unwrap(), iter.next().unwrap().parse::<char>().unwrap(), ) } fn readuuu() -> (usize, usize, usize) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<usize>().unwrap(), iter.next().unwrap().parse::<usize>().unwrap(), iter.next().unwrap().parse::<usize>().unwrap(), ) } #[allow(dead_code)] fn readiiii() -> (i64, i64, i64, i64) { let mut str = String::new(); let _ = stdin().read_line(&mut str).unwrap(); let mut iter = str.split_whitespace(); ( iter.next().unwrap().parse::<i64>().unwrap(), iter.next().unwrap().parse::<i64>().unwrap(), iter.next().unwrap().parse::<i64>().unwrap(), iter.next().unwrap().parse::<i64>().unwrap(), ) } use std; const EPS: f64 = 1e-9; #[derive(Debug, Clone, Copy)] #[allow(dead_code)] pub struct Vector2D(f64, f64); impl Vector2D { pub fn add(a: f64, b: f64) -> f64 { let c = a + b; if c.abs() < EPS { 0.0 } else { c } } pub fn dot(self, other: Vector2D) -> f64 { Self::add(self.0 * other.0, self.1 * other.1) } pub fn det(self, other: Vector2D) -> f64 { Self::add(self.0 * other.1, -self.1 * other.0) } pub fn complex_mul(self, other: Vector2D) -> Self { let real = self.0 * other.0 - self.1 * other.1; let imag = self.0 * other.1 + self.1 * other.0; Vector2D(real, imag) } pub fn dist(self, other: Self) -> f64 { (self - other).len() } pub fn len(&self) -> f64 { f64::sqrt((self.0).powi(2) + (self.1).powi(2)) } pub fn unit(self) -> Vector2D { let l = self.len(); Vector2D(self.0 / l, self.1 / l) } #[doc = "orthogonal vector"] pub fn normal(self) -> Vector2D { Vector2D(self.1, -self.0).unit() } #[doc = "bisection of the angle"] pub fn bisect(a: Vector2D, b: Vector2D) -> Vector2D { (a.unit() + b.unit()).unit() } } impl std::ops::Add for Vector2D { type Output = Vector2D; fn add(self, rhs: Vector2D) -> Self::Output { Vector2D(Vector2D::add(self.0, rhs.0), Vector2D::add(self.1, rhs.1)) } } impl std::ops::Sub for Vector2D { type Output = Vector2D; fn sub(self, rhs: Vector2D) -> Self::Output { Vector2D(Vector2D::add(self.0, -rhs.0), Vector2D::add(self.1, -rhs.1)) } } impl std::ops::Mul<f64> for Vector2D { type Output = Vector2D; fn mul(self, rhs: f64) -> Self::Output { Vector2D(rhs * self.0, rhs * self.1) } } impl std::ops::Div<f64> for Vector2D { type Output = Vector2D; fn div(self, rhs: f64) -> Self::Output { Vector2D(self.0 / rhs, self.1 / rhs) } } impl std::cmp::PartialEq for Vector2D { fn eq(&self, other: &Self) -> bool { let x = (self.0 - other.0).abs(); let y = (self.1 - other.1).abs(); x < EPS && y < EPS } } #[derive(Clone, Copy)] struct Triangle { x: Vector2D, y: Vector2D, z: Vector2D, } impl Triangle { pub fn exists(&self) -> bool { let a = (self.y - self.z).len(); let b = (self.x - self.z).len(); let c = (self.x - self.y).len(); if a + b - c < EPS { return false; } if b + c - a < EPS { return false; } if c + a - b < EPS { return false; } true } } #[derive(Debug, Clone, Copy)] pub struct Circle { center: Vector2D, radius: f64, } impl Circle { pub fn inner_circle(a: Vector2D, b: Vector2D, c: Vector2D) -> Option<Circle> { let tri = Triangle { x: a, y: b, z: c }; if !tri.exists() { return None; } let a_bisect = Line2D::pd(a, Vector2D::bisect(a - b, a - c)); let b_bisect = Line2D::pd(b, Vector2D::bisect(b - a, b - c)); let center = Line2D::intersection(a_bisect, b_bisect); let ab = Line2D::pd(a, b - a); let radius = ab.distance(center); Some(Circle { center: center, radius: radius, }) } pub fn outer_circle(x: Vector2D, y: Vector2D, z: Vector2D) -> Option<Circle> { let a = (y - z).len(); let a2 = a * a; let b = (x - z).len(); let b2 = b * b; let c = (x - y).len(); let c2 = c * c; if a + b - c < EPS { return None; } if b + c - a < EPS { return None; } if c + a - b < EPS { return None; } let X = x * (a2 * (b2 + c2 - a2)) + y * (b2 * (c2 + a2 - b2)) + z * (c2 * (a2 + b2 - c2)); let Y = a2 * (b2 + c2 - a2) + b2 * (c2 + a2 - b2) + c2 * (a2 + b2 - c2); let center = X / Y; let radius = (x - center).len(); Some(Circle { center: center, radius: radius, }) } pub fn intersection(c1: &Self, c2: &Self) -> Vec<Vector2D> { let d = c1.center.dist(c2.center); if d > c1.radius + c2.radius + EPS { return vec![]; } if c1.center == c2.center { return vec![]; } let rc: f64 = (d * d + c1.radius * c1.radius - c2.radius * c2.radius) / (2. * d); let rs: f64 = f64::sqrt(c1.radius * c1.radius - rc * rc); let diff: Vector2D = (c2.center - c1.center) / d; let p1 = c1.center + diff.complex_mul(Vector2D(rc, rs)); let p2 = c1.center + diff.complex_mul(Vector2D(rc, -rs)); if p1 == p2 { vec![p1] } else { vec![p1, p2] } } } #[test] fn test_inner_circle() { let p1 = Vector2D(0., 0.); let p2 = Vector2D(0., 1.); let p3 = Vector2D(1., 0.); let ic = Circle::inner_circle(p1, p2, p1); dbg!(&ic); let ic = Circle::inner_circle(p1, p2, p3); dbg!(&ic); } #[test] fn test_outer_circle() { let p1 = Vector2D(0., 0.); let p2 = Vector2D(0., 1.); let p3 = Vector2D(1., 0.); let ic = Circle::outer_circle(p1, p2, p1); dbg!(&ic); let ic = Circle::outer_circle(p1, p2, p3); dbg!(&ic); } #[test] fn test_circle_intersection() { let c1 = Circle { center: Vector2D(1., 0.), radius: 2., }; let c2 = Circle { center: Vector2D(-1., 0.), radius: 2., }; dbg!(Circle::intersection(&c1, &c1)); dbg!(Circle::intersection(&c1, &c2)); let c1 = Circle { center: Vector2D(1., 0.), radius: 1., }; let c2 = Circle { center: Vector2D(-1., 0.), radius: 1., }; dbg!(Circle::intersection(&c1, &c2)); let c1 = Circle { center: Vector2D(1., 0.), radius: 0.8, }; let c2 = Circle { center: Vector2D(-1., 0.), radius: 0.8, }; dbg!(Circle::intersection(&c1, &c2)); } /// Is line a-b and line c-d intersected ? pub fn is_intersected(a: Vector2D, b: Vector2D, c: Vector2D, d: Vector2D) -> bool { let ta = (c.0 - d.0) * (a.1 - c.1) + (c.1 - d.1) * (c.0 - a.0); let tb = (c.0 - d.0) * (b.1 - c.1) + (c.1 - d.1) * (c.0 - b.0); let tc = (a.0 - b.0) * (c.1 - a.1) + (a.1 - b.1) * (a.0 - c.0); let td = (a.0 - b.0) * (d.1 - a.1) + (a.1 - b.1) * (a.0 - d.0); tc * td <= 0.0 && ta * tb <= 0.0 // Not intersects start or end point. // tc * td < 0.0 && ta * tb < 0.0 } #[derive(Clone, Copy, Debug)] pub struct Line2D { p: Vector2D, d: Vector2D, } impl Line2D { pub fn pd(p: Vector2D, d: Vector2D) -> Self { Line2D { p: p, d: d.unit() } } pub fn from_two_points(a: Vector2D, b: Vector2D) -> Self { Line2D { p: a, d: b - a } } pub fn intersection(a: Line2D, b: Line2D) -> Vector2D { let n = b.d.normal(); let x = n.dot(b.p - a.p) / n.dot(a.d); a.p + a.d * x } pub fn distance(self, a: Vector2D) -> f64 { let perpendicular = Self::pd(a, self.d.normal()); let q = Self::intersection(self, perpendicular); (a - q).len() } } #[test] fn test_line_intersection() { let m = Line2D::pd(Vector2D(0., 0.), Vector2D(1., 1.)); let l1 = Line2D::pd(Vector2D(0., 2.), Vector2D(1., 0.)); let l2 = Line2D::pd(Vector2D(0., 2.), Vector2D(1., -1.)); let p1 = Line2D::intersection(m, l1); let p2 = Line2D::intersection(m, l2); assert_eq!(p1, Vector2D(2., 2.)); assert_eq!(p2, Vector2D(1., 1.)); } #[test] fn test_line_distance() { let l = Line2D::from_two_points(Vector2D(-1., 1.), Vector2D(1., 1.)); let p = Vector2D(0., 0.); assert_eq!(l.distance(p), 1.); } #[derive(PartialEq, PartialOrd)] /// Implement Eq and Ord for a type which has only PartialEq and PartialOrd. /// It is useful when sorting a Vec of f64 pub struct Total<T>(pub T); impl<T: PartialEq> Eq for Total<T> {} impl<T: PartialOrd> Ord for Total<T> { fn cmp(&self, other: &Total<T>) -> Ordering { self.0.partial_cmp(&other.0).unwrap() } } #[allow(dead_code)] fn convex_hull(vs: &[Vector2D]) -> Vec<usize> { let mut idx: Vec<usize> = (0..vs.len()).collect(); idx.sort_by_key(|&i| Total((vs[i].0, vs[i].1))); let mut res = Vec::new(); for &i in &idx { while res.len() > 1 && Vector2D::det( vs[res[res.len() - 1]] - vs[res[res.len() - 2]], vs[i] - vs[res[res.len() - 1]], ) <= 0.0 { res.pop(); } res.push(i); } let t = res.len(); for &i in idx.iter().rev().skip(1) { while res.len() > t && (vs[res[res.len() - 1]] - vs[res[res.len() - 2]]).det(vs[i] - vs[res[res.len() - 1]]) <= 0.0 { res.pop(); } res.push(i); } res.pop(); res } #[test] fn test_convex_hull() { let vs = vec![ Vector2D(-1.0, -1.0), Vector2D(-1.0, 1.0), Vector2D(1.0, 1.0), Vector2D(1.0, -1.0), Vector2D(0.0, 0.0), Vector2D(0.1, 0.1), ]; let mut idx = convex_hull(&vs); idx.sort(); assert_eq!(&idx, &[0, 1, 2, 3]); } pub fn closest_pair(ps: &[(f64, f64)]) -> ((f64, f64), (f64, f64)) { fn d(p1: (f64, f64), p2: (f64, f64)) -> f64 { ((p1.0 - p2.0).powi(2) + (p1.1 - p2.1).powi(2)).sqrt() } fn rec(x_sort: &[(f64, f64)], y_sort: &[(f64, f64)]) -> ((f64, f64), (f64, f64)) { if x_sort.len() <= 3 { let mut min_d = std::f64::MAX; let mut pair = ((0.0, 0.0), (0.0, 0.0)); for (i, &p1) in x_sort.iter().enumerate() { for (j, &p2) in x_sort.iter().enumerate() { if i != j { let dist = d(p1, p2); if dist < min_d { min_d = dist; pair = (p1, p2); } } } } return pair; } let mid = x_sort.len() / 2; let pivot = x_sort[mid].0; let q_x = &x_sort[..mid]; let r_x = &x_sort[mid..]; let mut q_y = Vec::with_capacity(mid); let mut r_y = Vec::with_capacity(x_sort.len() - mid); for &(x, y) in y_sort { if x < pivot { q_y.push((x, y)); } else { r_y.push((x, y)); } } let pair1 = rec(q_x, &q_y); let pair2 = rec(r_x, &r_y); let w = d(pair1.0, pair1.1).min(d(pair2.0, pair2.1)); let s: Vec<(f64, f64)> = y_sort .iter() .filter(|&&(x, _)| (pivot - x).abs() <= w) .cloned() .collect(); let mut min_d = w; let mut pair = if d(pair1.0, pair1.1) < d(pair2.0, pair2.1) { pair1 } else { pair2 }; for (i, &p1) in s.iter().enumerate() { for &p2 in s[i + 1..].iter().take(15) { let dist = d(p1, p2); if dist < min_d { min_d = dist; pair = (p1, p2); } } } pair } let mut x_sort = ps.to_vec(); let mut y_sort = ps.to_vec(); x_sort.sort_by_key(|p| Total(p.0)); y_sort.sort_by_key(|p| Total(p.1)); rec(&x_sort, &y_sort) } fn solve() { let n: usize = read(); let mut vec: Vec<usize> = read_vec(); let mut res = vec![0; 101010]; for i in 0..n { res[0] += 1; res[vec[i]] -= 1; } for i in 0..101000 { res[i + 1] += res[i]; } for i in 0..vec[0] { if i != 0 { print!(" "); } print!("{}", res[i]); } println!(""); return; }