結果
問題 | No.1744 Selfish Spies 1 (à la Princess' Perfectionism) |
ユーザー | maspy |
提出日時 | 2022-10-09 07:34:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 36 ms / 5,000 ms |
コード長 | 24,780 bytes |
コンパイル時間 | 4,087 ms |
コンパイル使用メモリ | 259,792 KB |
実行使用メモリ | 12,156 KB |
最終ジャッジ日時 | 2024-06-23 07:22:58 |
合計ジャッジ時間 | 6,011 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 3 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 7 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 3 ms
5,376 KB |
testcase_28 | AC | 30 ms
12,156 KB |
testcase_29 | AC | 4 ms
5,376 KB |
testcase_30 | AC | 3 ms
5,376 KB |
testcase_31 | AC | 4 ms
5,376 KB |
testcase_32 | AC | 4 ms
5,376 KB |
testcase_33 | AC | 29 ms
12,152 KB |
testcase_34 | AC | 26 ms
12,156 KB |
testcase_35 | AC | 36 ms
12,036 KB |
testcase_36 | AC | 36 ms
12,032 KB |
testcase_37 | AC | 34 ms
12,156 KB |
testcase_38 | AC | 31 ms
12,156 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1744" #line 1 "/home/maspy/compro/library/my_template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using pi = pair<ll, ll>; using vi = vector<ll>; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T pick(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T pick(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T pick(pqg<T> &que) { assert(que.size()); T a = que.top(); que.pop(); return a; } template <typename T> T pick(vc<T> &que) { assert(que.size()); T a = que.back(); que.pop_back(); return a; } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename F> ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template <typename CNT, typename T> vc<CNT> bincount(const vc<T> &A, int size) { vc<CNT> C(size); for (auto &&x: A) { ++C[x]; } return C; } // stable template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { int n = len(I); vc<T> B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include <unistd.h> namespace detail { template <typename T, decltype(&T::is_modint) = &T::is_modint> std::true_type check_value(int); template <typename T> std::false_type check_value(long); } // namespace detail template <typename T> struct is_modint : decltype(detail::check_value<T>(0)) {}; template <typename T> using is_modint_t = enable_if_t<is_modint<T>::value>; template <typename T> using is_not_modint_t = enable_if_t<!is_modint<T>::value>; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template <class T, enable_if_t<is_same<T, string>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template <class T, is_modint_t<T> * = nullptr> bool read_single(T &ref) { long long val = 0; bool f = read_single(val); ref = T(val); return f; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template <class T> bool read_single(vector<T> &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template <class T, class U> bool read_single(pair<T, U> &p) { return (read_single(p.first) && read_single(p.second)); } template <class A, class B, class C> bool read_single(tuple<A, B, C> &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p))); } template <class A, class B, class C, class D> bool read_single(tuple<A, B, C, D> &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p)) && read_single(get<3>(p))); } void read() {} template <class H, class... T> void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char &val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string &s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template <class T, is_modint_t<T> * = nullptr> void write(T &ref) { write(ref.val); } template <class T> void write(const vector<T> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template <class T, class U> void write(const pair<T, U> &val) { write(val.first); write(' '); write(val.second); } template <class A, class B, class C> void write(const tuple<A, B, C> &val) { auto &[a, b, c] = val; write(a), write(' '), write(b), write(' '), write(c); } template <class A, class B, class C, class D> void write(const tuple<A, B, C, D> &val) { auto &[a, b, c, d] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d); } template <class A, class B, class C, class D, class E> void write(const tuple<A, B, C, D, E> &val) { auto &[a, b, c, d, e] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e); } template <class A, class B, class C, class D, class E, class F> void write(const tuple<A, B, C, D, E, F> &val) { auto &[a, b, c, d, e, f] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f); } template <class T, size_t S> void write(const array<T, S> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if(val < 0){ negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if(negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "/home/maspy/compro/library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } constexpr bool is_directed() { return directed; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void resize(int n) { N = n; } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } void read_parent(int off = 1) { for (int v = 1; v < N; ++v) { INT(p); p -= off; add(p, v); } build(); } void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "/home/maspy/compro/library/ds/unionfind.hpp" struct UnionFind { int n; int n_comp; std::vector<int> size, par; UnionFind(int n) : n(n), n_comp(n), size(n, 1), par(n) { std::iota(par.begin(), par.end(), 0); } int find(int x) { assert(0 <= x && x < n); while (par[x] != x) { par[x] = par[par[x]]; x = par[x]; } return x; } int operator[](int x) { return find(x); } bool merge(int x, int y) { x = find(x); y = find(y); if (x == y) { return false; } n_comp--; if (size[x] < size[y]) std::swap(x, y); size[x] += size[y]; size[y] = 0; par[y] = x; return true; } std::vector<int> find_all() { std::vector<int> A(n); for (int i = 0; i < n; ++i) A[i] = find(i); return A; } void reset() { n_comp = n; size.assign(n, 1); std::iota(par.begin(), par.end(), 0); } }; #line 3 "/home/maspy/compro/library/graph/check_bipartite.hpp" // 二部グラフ判定 + 復元 // 二部グラフでなかった場合には empty template <typename Graph> vc<int> check_bipartite(Graph& G) { assert(G.is_prepared()); int n = G.N; UnionFind uf(2 * n); for (auto&& e: G.edges) { int u = e.frm, v = e.to; if (e.cost == 0) uf.merge(u, v), uf.merge(u + n, v + n); if (e.cost != 0) uf.merge(u + n, v), uf.merge(u, v + n); } vc<int> color(2 * n, -1); FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) { color[uf[v]] = 0; color[uf[v + n]] = 1; } FOR(v, n) color[v] = color[uf[v]]; color.resize(n); FOR(v, n) if (uf[v] == uf[v + n]) return {}; return color; } #line 3 "/home/maspy/compro/library/graph/strongly_connected_component.hpp" template <typename Graph> pair<int, vc<int>> strongly_connected_component(Graph& G) { assert(G.is_directed()); assert(G.is_prepared()); int N = G.N; int C = 0; vc<int> comp(N); vc<int> low(N); vc<int> ord(N, -1); vc<int> visited; int now = 0; auto dfs = [&](auto self, int v) -> void { low[v] = now; ord[v] = now; ++now; visited.eb(v); for (auto&& [frm, to, cost, id]: G[v]) { if (ord[to] == -1) { self(self, to); chmin(low[v], low[to]); } else { chmin(low[v], ord[to]); } } if (low[v] == ord[v]) { while (1) { int u = visited.back(); visited.pop_back(); ord[u] = N; comp[u] = C; if (u == v) break; } ++C; } }; FOR(v, N) { if (ord[v] == -1) dfs(dfs, v); } FOR(v, N) comp[v] = C - 1 - comp[v]; return {C, comp}; } template <typename GT> Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) { Graph<int, 1> DAG(C); vvc<int> edges(C); for (auto&& e: G.edges) { int x = comp[e.frm], y = comp[e.to]; if (x == y) continue; edges[x].eb(y); } FOR(c, C) { UNIQUE(edges[c]); for (auto&& to: edges[c]) DAG.add(c, to); } DAG.build(); return DAG; } #line 4 "/home/maspy/compro/library/flow/bipartite.hpp" template <typename GT> struct BipartiteMatching { int N; GT& G; vc<int> color; vc<int> dist, match; vc<int> vis; BipartiteMatching(GT& G) : N(G.N), G(G), dist(G.N, -1), match(G.N, -1) { color = check_bipartite(G); assert(!color.empty()); while (1) { bfs(); vis.assign(N, false); int flow = 0; FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow; if (!flow) break; } } BipartiteMatching(GT& G, vc<int> color) : N(G.N), G(G), color(color), dist(G.N, -1), match(G.N, -1) { while (1) { bfs(); vis.assign(N, false); int flow = 0; FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow; if (!flow) break; } } void bfs() { dist.assign(N, -1); queue<int> que; FOR(v, N) if (!color[v] && match[v] == -1) que.emplace(v), dist[v] = 0; while (!que.empty()) { int v = que.front(); que.pop(); for (auto&& e: G[v]) { dist[e.to] = 0; int w = match[e.to]; if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que.emplace(w); } } } bool dfs(int v) { vis[v] = 1; for (auto&& e: G[v]) { int w = match[e.to]; if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) { match[e.to] = v, match[v] = e.to; return true; } } return false; } vc<pair<int, int>> matching() { vc<pair<int, int>> res; FOR(v, N) if (v < match[v]) res.eb(v, match[v]); return res; } vc<int> vertex_cover() { vc<int> res; FOR(v, N) if (color[v] ^ (dist[v] == -1)) { res.eb(v); } return res; } vc<int> independent_set() { vc<int> res; FOR(v, N) if (!(color[v] ^ (dist[v] == -1))) { res.eb(v); } return res; } vc<int> edge_cover() { vc<bool> done(N); vc<int> res; for (auto&& e: G.edges) { if (done[e.frm] || done[e.to]) continue; if (match[e.frm] == e.to) { res.eb(e.id); done[e.frm] = done[e.to] = 1; } } for (auto&& e: G.edges) { if (!done[e.frm]) { res.eb(e.id); done[e.frm] = 1; } if (!done[e.to]) { res.eb(e.id); done[e.to] = 1; } } sort(all(res)); return res; } /* Dulmage–Mendelsohn decomposition http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html - 最大マッチングとしてありうるもの:同じ W を持つ点のみ - color=0 から 1 への辺:W(l) <= W(r) - color=0 かつ W=0 の点:必ず使われる - color=1 かつ W=K の点:必ず使われる - 1 <= k < K:任意の最大マッチングについて、すべての点が使われる - color=0 の点が必ず使われる:W=0,1,...,K-1 - color=1 の点が必ず使われる:W=1,2,...,K - 辺uvが必ず使われる:同じ W を持つ辺が唯一 */ pair<int, vc<int>> DM_decomposition() { // 非飽和点からの探索 vc<int> W(N, -1); int INF = N + 10; vc<int> que; auto add = [&](int v, int x) -> void { if (W[v] == -1) { W[v] = x; que.eb(v); } }; FOR(v, N) if (match[v] == -1 && color[v] == 0) add(v, 0); FOR(v, N) if (match[v] == -1 && color[v] == 1) add(v, INF); while (len(que)) { auto v = pick(que); if (match[v] != -1) add(match[v], W[v]); if (color[v] == 0 && W[v] == 0) { for (auto&& e: G[v]) { add(e.to, W[v]); } } if (color[v] == 1 && W[v] == INF) { for (auto&& e: G[v]) { add(e.to, W[v]); } } } // 残った点からなるグラフを作って強連結成分分解 vc<int> V; FOR(v, N) if (W[v] == -1) V.eb(v); int n = len(V); Graph<bool, 1> DG(n); FOR(i, n) { int v = V[i]; if (match[v] != -1) { int j = LB(V, match[v]); DG.add(i, j); } if (color[v] == 0) { for (auto&& e: G[v]) { if (W[e.to] != -1 || e.to == match[v]) continue; int j = LB(V, e.to); DG.add(i, j); } } } DG.build(); auto [K, comp] = strongly_connected_component(DG); K += 1; // 答 FOR(i, n) { W[V[i]] = 1 + comp[i]; } FOR(v, N) if (W[v] == INF) W[v] = K; return {K, W}; } void debug() { print("match", match); print("min vertex covor", vertex_cover()); print("max indep set", independent_set()); print("min edge cover", edge_cover()); } }; #line 7 "main.cpp" void solve() { LL(N, M, L); using P = pair<int, int>; VEC(P, XY, L); Graph<bool, 0> G(N + M); for (auto&& [x, y]: XY) { --x, --y; y += N; G.add(x, y); } G.build(); vc<int> color(N + M); FOR(v, N, N + M) color[v] = 1; BipartiteMatching<decltype(G)> BM(G, color); auto [K, W] = BM.DM_decomposition(); vc<int> CNT(K + 1); for (auto&& [x, y]: XY) if (W[x] == W[y]) CNT[W[x]]++; for (auto&& [x, y]: XY) { No(W[x] == W[y] && CNT[W[x]] == 1); } } signed main() { cout << fixed << setprecision(15); ll T = 1; // LL(T); FOR(T) solve(); return 0; }