結果
| 問題 |
No.2213 Neq Move
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-10-13 12:14:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,328 bytes |
| コンパイル時間 | 154 ms |
| コンパイル使用メモリ | 81,908 KB |
| 実行使用メモリ | 79,268 KB |
| 最終ジャッジ日時 | 2024-07-07 15:07:16 |
| 合計ジャッジ時間 | 1,937 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 1 WA * 4 |
ソースコード
from collections import deque
import random
import sys
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 63 - 1
mod = 998244353
def solve1(a, b, c, d):
dist = [[inf] * 100 for _ in range(100)]
dist[a][b] = 0
q = deque([(a, b)])
while q:
i, j = q.popleft()
if i == c and j == d:
return dist[i][j]
if i + 1 != j and i + 1 < 100 and dist[i + 1][j] > dist[i][j] + 1:
dist[i + 1][j] = dist[i][j] + 1
q.append((i + 1, j))
if j + 1 != i and j + 1 < 100 and dist[i][j + 1] > dist[i][j] + 1:
dist[i][j + 1] = dist[i][j] + 1
q.append((i, j + 1))
if j != 0 and dist[0][j] > dist[i][j] + 1:
dist[0][j] = dist[i][j] + 1
q.append((0, j))
if i != 0 and dist[i][0] > dist[i][j] + 1:
dist[i][0] = dist[i][j] + 1
q.append((i, 0))
def dijkstra(s, n, graph):
INF = 10 ** 18
import heapq
dist = [INF] * n
dist[s] = 0
bef = [0] * n
bef[s] = s
hq = [(0, s)]
heapq.heapify(hq)
visit = [False] * n
while hq:
c, v = heapq.heappop(hq)
visit[v] = True
if c > dist[v]:
continue
for to, cost in graph[v]:
if visit[to] == False and dist[v] + cost < dist[to]:
dist[to] = cost + dist[v]
bef[to] = v
heapq.heappush(hq, (dist[to], to))
return dist, bef
def solve2(a, b, c, d):
ind = {}
i = 0
for v in [0, 1, a, b, c, d]:
for u in [0, 1, a, b, c, d]:
if u != v:
ind[u, v] = i
i += 1
graph = [[] for _ in range(i)]
for u1, v1 in ind.keys():
i1 = ind[u1, v1]
for u2, v2 in ind.keys():
i2 = ind[u2, v2]
if u1 <= u2 and v1 <= v2 and i1 != i2 and ((u1 < v1 and u2 < v2) or (u1 > v1 and u2 > v2)):
graph[i1].append((i2, abs(u2 - u1) + abs(v2 - v1)))
if (u2 == 0 and v1 == v2) or (v2 == 0 and u1 == u2):
graph[i1].append((i2, 1))
D, _ = dijkstra(ind[a, b], i, graph)
return (D[ind[(c, d)]])
for _ in range(ii()):
a, b, c, d = mi()
print(solve2(a, b, c, d))